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Abstract

An Approach for the Adaptive Solution of

Optimization Problems Governed by Partial

Differential Equations with Uncertain Coefficients

by

Drew P. Kouri

In this thesis, I develop and analyze a general theoretical framework for optimiza-

tion problems governed by partial differential equations (PDEs) with random inputs.

This theoretical framework is based on the adjoint calculus for computing derivatives

of the objective function. I develop an efficient discretization and numerical opti-

mization algorithm for the solution of these PDE constrained optimization problems.

Using derivative based numerical optimization algorithms to solve these PDE con-

strained optimization problems is computationally expensive due to the large number

of PDE solves required at each iteration. I present a stochastic collocation discretiza-

tion for these PDE constrained optimization problems and prove the convergence of

this discretization method for a specific class of problems.

The stochastic collocation discretization technique described here requires many

decoupled PDE solves to compute gradient and Hessian information. I develop a novel

optimization theoretic framework based on dimension adaptive sparse grid quadrature

to reduce the total number of PDE solves. My adaptive framework employs basic

or retrospective trust regions to manage the adapted stochastic collocation models.

In addition, I prove global first order convergence of the retrospective trust region



iii

algorithm under weakened assumptions on the modeled gradients. In fact, if one can

bound the error between actual and modeled gradients using reliable and efficient

a posteriori error estimators, then the global convergence of the retrospective trust

region algorithm follows.

Finally, I describe a high performance implementation of my adaptive colloca-

tion and trust region framework. This framework can be efficiently implemented in

the C++ programming language using the Message Passing Interface (MPI). Due

to the large number of PDE solves required for derivative computations, it is essen-

tial to choose inexpensive approximate models and appropriate large-scale nonlinear

programming techniques throughout the optimization routine to obtain an efficient

algorithm. Numerical results for the adaptive solution of these optimization problems

are presented.
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Chapter 1

Introduction

With the advances in computational power and efficient numerical simulation of com-

plex physical systems, simulation based optimization and uncertainty quantification

are becoming increasingly feasible. The ability to simulate complex behaviors of

physical systems gives engineers and experimental scientists the ability to make pre-

dictions and hypotheses about certain outputs of interest. These simulations are

critical for scientists of many fields such as: fluid dynamics, heat transfer, chemi-

cally reacting systems, oil field research, nonproliferation seismology, monitoring of

CO2 output, radiation transport, climate science, and structural mechanics. With

these computational and mathematical forward models come uncertainty concern-

ing computed quantities [83, 84]. In physical modeling and numerical simulation,

uncertainty arises from lack of knowledge corresponding to model physics and as-

sumptions (epistemic uncertainty) and inherent variability in the model parameters

(aleatory uncertainty). Epistemic uncertainty can be reduced by increased knowledge

and is generally not probabilistic in nature, although one can, to some extent, handle

epistemic uncertainty in the Bayesian framework. On the other hand, aleatory un-

certainty is typically characterized by assigning probability distributions to uncertain

or random parameters. The quantification of aleatory uncertainty is performed by

tracking these probability distributions through the forward simulations.

1
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This work is focused on the treatment of aleatory uncertainty. Common tech-

niques for quantifying aleatory uncertainty are intrusive and non-intrusive expansion

methods [46]. Intrusive methods include local and global polynomial chaos expansion

methods [42, 10, 70]. Such methods seek a global or local polynomial representation

of the outputs of interest. The name intrusive refers to the fact that these methods are

typically not “black box;” that is, numerical implementation of such methods requires

changes to black box forward simulation code [83]. Moreover, intrusive methods typ-

ically result in large coupled systems to be solved. Common non-intrusive methods

are sample based collocation methods such as (quasi-)Monte Carlo and stochastic col-

location [121, 123, 9]. Non-intrusive methods result in many decoupled deterministic

forward simulations at random or structured collocation points.

The stochastic collocation method seeks an interpolated polynomial representa-

tion of the random field output of interest. Furthermore, provided sufficient regu-

larity of the output of interest, stochastic collocation enjoys rapid convergence as a

discretization scheme. This is contrary to Monte Carlo methods. Monte Carlo meth-

ods converge in probability at a rate of 1/
√
Q where Q is the number of random

samples. This means, one requires a large number of samples to decrease the error

in simulation. Aside from the slow convergence rate, Monte Carlo avoids the curse

of dimensionality, i.e. the convergence rate is independent of the dimension of the

problem. Stochastic collocation on the other hand exploits regularity of the output of

interest to speed convergence [9]. Unlike Monte Carlo methods, stochastic collocation

does not thwart the curse of dimensionality, although the dependence of the conver-

gence rate on the stochastic dimension can be reduced by employing sparse grids

[52, 87, 88, 15, 119, 32, 89, 92, 93]. Sparse grids were first introduced by Smolyak in

1963 [110] and present an efficient means of approximating tensor product problems.

Sparse grids and stochastic collocation converge rapidly for sufficiently smooth prob-

lems and are vastly superior to Monte Carlo methods for problems with a modest

number of random variables.
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Forward simulation and uncertainty quantification are typically not the only goals

of experimentalists. In many applications, these forward simulation codes are used to

aid in control and design of physical processes. Also, these simulators can be used to

infer parameters of the physical system. The discretization of these problems results

in extremely large scale constrained optimization problems even when uncertainty

is not considered. When uncertainty is added to the forward problems, the scale of

the resulting optimization problem increases drastically. Moreover, the addition of

uncertainty requires problem reformulation. These reformulations result in “robust”

optimization problems where the goal is to minimize the risk associated with a certain

design or control. Here, risk refers to a measure of the variation of the objective with

respect to the random model input data. These measures of risk are studied in

depth in the context of stochastic programming. A particularly convenient and rich

class of risk measures are the coherent risk measures [98, 99, 108]. These measures

exhibit properties desirable for optimization, such as convexity and monotonicity.

Reformulating the optimization problem may also result in chance or probabilistic

constraints where one requires that the probability that certain outputs of interest

exceed set thresholds be less than a set “tolerable” level [116]. These constraints may

arise as constraints on the probability of failure of the optimal design.

Risk measures and chance constraints add much complexity to the analytical and

computational aspects of these optimization problems. Näıvely applied, these ad-

ditions typically result in a lack of differentiability for the objective function and

constraints [108]. To this end, traditional gradient based optimization methods may

not apply. Due to the extreme computational complexity of these problems, it is

advantageous to use gradient based methods to generate reliable and efficient opti-

mization routines. In order to apply gradient based methods, one may need to choose

a suitable smooth alternate to the risk measure or chance constraints, or one may need

to reformulate the optimization problem by adding auxiliary variables. Care must be

taken when reformulating these problems and discretizing using stochastic collocation
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on sparse grids, which produce negative quadrature weights, as these reformulations

may lead to inconsistencies, i.e. loss of convexity of the objective or constraints. The

current treatment of risk measures and chance constraints typically involves the use

of Monte Carlo methods and to my knowledge has not been tackled using polynomial

chaos or stochastic collocation methods.

Aside from problem formulation issues, optimization problems governed by un-

certain forward models require possibly many simulations of the forward model per

gradient based optimization iteration. Furthermore, gradient based methods require

some control over the forward simulation code in order to compute adjoint states

and gradients. Finite differences can be employed to avoid modifying black box for-

ward simulation code, but finite difference computations become prohibitive for large

scale optimization problems as each gradient computation requires multiple forward

simulations. I consider adjoint based optimization because most models used in en-

gineering lend themselves to adjoint computations. The adjoint approach yields an

efficient and accurate gradient computation at the expense of destroying the black

box quality of the forward simulator. When non-intrusive uncertainty quantification

methods are used with the adjoint approach, the forward and adjoint problems at

each sample can be solved in parallel using the deterministic solvers, i.e. no new code

needs to be generated to accommodate uncertainty when computing gradients [67].

Even the use of adjoint based gradient computation does not solve the problem of

algorithmic and computational inefficiency. As stated above, adjoint based computa-

tions require many forward simulations with non-intrusive methods or, in the case of

intrusive methods, the solution of many large coupled systems of equations. Hence,

optimization quickly becomes prohibitive. To circumvent this, I propose to use adap-

tive uncertainty quantification methods to solving these optimization problems under

uncertainty. Optimization is an ideal setting for adaptivity as accuracy in model sim-

ulation is only essential when close to the minimizer. Moreover, optimization gives a

natural metric to guide adaptivity. I have developed an adaptive sparse grid stochastic
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collocation framework to solve these optimization problems. My adaptive approach

is based on the trust region algorithm for unconstrained optimization, which provides

an exemplary optimization theoretic framework for managing approximate models.

In this case, the adaptivity is driven according to the size of the gradient. Therefore,

as one approaches a first order critical point, the model is increasingly refined. Fur-

thermore, it is possible to extend the trust region idea to some classes of constrained

problems in which case the adaptivity is driven by the projected gradient. To this

end, I propose to extend my adaptive sparse grid collocation trust region framework

to handle more general constrained and chance constrained optimization problems.

The goal of this extension is to develop efficient algorithms and software to handle

challenging engineering application problems.

1.1 Literature Review

My work presented in this thesis lies in the intersection of many mathematical fields

such as optimization theory, probability theory, approximation theory, and the theory

of partial differential equations (PDEs). It is my goal in this section to review some

relevant background material concerning PDEs with uncertain coefficients, sparse

grids, optimization problems governed by PDEs with uncertain coefficients, trust

region methods, and adaptive finite element methods.

1.1.1 PDEs with Uncertain Coefficients

The study of PDEs with uncertain coefficients is a relatively new subject, but the

building blocks for the modern analysis of such PDEs were formed in the early twen-

tieth century with Norbert Wiener’s 1938 development of “homogeneous chaos” or

polynomial chaos expansion [122]. This polynomial chaos expansion provides a poly-

nomial representation of Gaussian random fields and remains a popular numerical

method of solving PDEs with uncertain coefficients [65, 72, 113]. Other contributions
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to the modern theory of PDEs with uncertain coefficients stems from the indepen-

dent works of Karhunen [64] and Lòeve [71] who developed a general Fourier series

representation of random fields known today as the Karhunen-Lòeve (KL) expansion.

More recently, polynomial chaos and the KL expansion have been employed to create

numerical methods for solving PDEs with uncertain coefficients.

The polynomial chaos methods for solving PDEs with uncertain coefficients has

received much attention [54, 124, 65]. Coupling the polynomial chaos method with

finite elements or other numerical PDE solution techniques gives a robust numerical

solution method, but suffers from the need to compute with high order global poly-

nomials. Babuska, Tempone, and Zouraris [11] developed a finite element scheme

known as stochastic Galerkin which encompasses polynomial chaos and allows for

local (discontinuous) polynomial representations of the random field solution. The

stochastic Galerkin method is very popular due to its rapid convergence rates, but

suffers from high computational costs. The stochastic Galerkin discretization results

in a large coupled linear system which may be expensive to solve.

Another class of methods known as sample based or intrusive methods circumvent

the need to solve a large coupled linear system. This class of methods contains Monte

Carlo, quasi Monte Carlo, and stochastic collocation. These methods lead to many

decoupled linear systems which may be solved in parallel. The Monte Carlo and quasi

Monte Carlo methods have their roots in probability theory, whereas the collocation

method has its roots in approximation theory. The stochastic collocation method

seeks to interpolate the random field PDE solution on a set of quadrature nodes

[123, 121, 86, 8]. Aside from being possibly more efficient than the stochastic Galerkin

method, the stochastic collocation method also enjoys similar convergence properties

to stochastic Galerkin [14].
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1.1.2 Sparse Grids and Approximation Theory

As mentioned, stochastic collocation discretization results in a decoupled system of

PDEs. The number of PDEs to be solved is exactly the number of nodes used for the

interpolation of the PDE solution. Therefore, it is essential to choose sets of nodes

which are small in size and exhibit high polynomial accuracy. These requirements

warrant the use of so called sparse grids. The sparse grid idea was developed in 1963

by Smolyak [111]. Recently, sparse grids have grown in popularity. As such, the

convergence of sparse quadrature and interpolation rules is well known [52, 87, 88,

15, 119, 32, 89, 92, 93]. General sparse grid rules achieve similar orders of accuracy

as corresponding tensor product rules, but have far fewer nodes. In fact, if the sparse

grid is based on nested one dimensional rules, then the sparse grid is even sparser

(i.e. has even fewer nodes). Some common choices of nested rules are the Clenshaw-

Curtis rule for uniformly distributed random variables [40], or any Gauss-Patterson

rule [91, 51]. Recently, many researchers have investigated adaptive and optimized

sparse grids [53, 55, 56], where the goal is to choose a sparse grid rule which is both

optimal in accuracy and number of nodes given a certain class of functions.

1.1.3 PDE Constrained Optimization Under Uncertainty

The subject of optimization problems governed by PDEs with uncertain coefficients

lies at the interface of PDEs with uncertain coefficients, optimization in Banach

spaces, and stochastic programming. Stochastic programming offers many numer-

ical schemes for solving problems with uncertainty, such as the sample average ap-

proximation (SAA) and the stochastic approximation algorithm (SA) [90, 108, 75].

These methods are Monte Carlo based methods and thus, not central to this the-

sis. Stochastic programming also gives the framework for dealing with probabilistic

(or chance) constraints, as well as, develops the theory of coherent risk measures

[100, 98, 116, 115, 114]. Both probabilistic constraints and coherent risk measures

are vastly important to the topics of this thesis.
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Combining ideas from stochastic programming and PDE constrained optimization

[63] gives the rich theory of PDE optimization under uncertainty. Although there has

been much work in the field of statistical inverse problems and signal recovery [74, 76,

118, 22], very few researchers actually consider optimal control of uncertain PDEs.

The few works that have considered such control problems lack a complete theoretical

framework and in some situations, do not seek necessarily optimal solutions [104, 25,

105, 27, 24, 26]. One common approach in these sources solves the control problem as

a sequence of deterministic problems defined at the collocation points. The controls

are then taken as the expected value of the computed controls. Controls generated

in this way are not necessarily optimal. Thus, there is a strong need for a unified

understanding and theory of PDE optimization under uncertainty. Some of this

theory can be found in [67].

1.1.4 Trust Regions and Frameworks for Adaptivity

As hinted at earlier, there is great need for efficient and reliable numerical methods for

the solution of optimization problems governed by PDEs with uncertain coefficients.

The goal of such methods should be to solve optimization problems using inexpensive

approximate models whenever possible. This framework is known as model manage-

ment and is an inexpensive and efficient solution method for optimization problems

governed by PDEs. Typically, model management frameworks are based on trust

regions due to their flexibility and provable global convergence [2, 3, 43, 44]. In fact,

one can prove convergence of trust region methods with minimal conditions on func-

tion and gradient exactness [36, 81, 96, 41, 60]. Such flexibility is ideal for model

adaptation. This idea of model adaptive trust regions has recently been exploited in

the context SQP methods in [127]. Furthermore, in [16], this idea has been applied

to the solution of stochastic programs using Monte Carlo sampling techniques. In

this thesis, I consider a novel trust region approach known as the retrospective trust

region method [17]. The retrospective trust region updates the trust region radius
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following model updates (as opposed to before). As such, the trust region radius is

updated to the new model rather than the old model. This modification may decrease

the possibility of prohibitively small trust region radii.

The quality of these adaptive frameworks is contingent on the quality of error

estimators used for adaptation. In the case of optimization problems governed by

PDEs with uncertain coefficients, there are three possible sources of error to be con-

trolled. First of all, the spatial PDE discretization can be adaptively controlled

using adaptive finite elements based on well known a posteriori error indicators

[33, 34, 95, 18, 19, 20, 61, 62]. Another source of error in the stochastic collocation

finite element solution arises from the quadrature rule used in defining the collocation

space. Few attempts have been made to control this error adaptively [53, 73, 1] and

it would be desirable to improve these estimates. A final possible source of error is in

model order reduction in the case of time dependent PDE constraints [21, 57, 4]. Al-

though model reduction is not the main topic of this thesis, the trust region framework

presented here is valid for adaptive model reduction in PDE constrained optimization.

1.2 Thesis Outline

In this thesis, I will first formulate a general form for optimization problems governed

by PDEs with uncertain coefficients. In this formulation, I will give assumptions

on the objective function and PDE constraint that guarantee well-posedness of the

optimization problem. Furthermore, I will introduce a model problem for this thesis

which corresponds to the distributed control of an elliptic PDE. Next, I will develop

the stochastic collocation method for solving PDEs with uncertain coefficients and

extend the collocation method to the case of optimization. Additionally I will prove

an a priori error bound for a class of control problems solved using the sparse grid

stochastic collocation finite element method. Following this collocation discussion, I

will develop general sparse grids for high dimensional interpolation and quadrature.
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In my discussion of sparse grids, I prove new interpolation and approximation results

for general sparse grid operators. Subsequently, I will present a novel model adap-

tive trust region approach to solving optimization problems governed by PDEs with

uncertain coefficients. Here, I analyze two trust region frameworks: the basic trust

region algorithm and the retrospective trust region algorithm. For the basic trust

region algorithm, my model adaptive framework is provably global convergent due

to results found in [60]. On the other hand, I prove the global convergence of the

retrospective trust algorithm under a weakened gradient conditions. Finally, I will

provide a brief discussion of implementation details and present numerical results.



Chapter 2

Optimization Under Uncertainty

Uncertainty is present in nearly every physical system and in many engineering ap-

plications the risk-averse optimization of such systems is crucial. In the literature,

the concept of risk is predominately applied to the optimization of financial portfo-

lios. My goal is to extended the concept of risk-averse optimization to engineering

and science applications. For example, in engineering design and control problems,

risk-averse optimization can be used as a certificate of reliability. In this chapter,

I will present a general formulation of the risk-averse optimization problem. I will

develop the test problem that I will consider throughout this thesis. In the determin-

istic setting, this test problem is a quadratic program posed in a Banach space. An

instance of this test problem is the quadratic optimal control of linear elliptic partial

differential equations (PDEs) with uncertain coefficients. This test problem is very

insightful and sheds light on a general formulation for these optimization problems.

Following the test problem I will formulate the general problem setting in which I

will study these risk-averse optimization problems and develop my adaptive stochastic

collocation and trust region framework. Moreover, I will formulate assumptions on

the general optimization problem. These assumptions will be used to ensure existence

and uniqueness of optimal solutions as well as ensure that the stochastic collocation

method is an applicable discretization technique. I will then derive the adjoint calcu-

11
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lus for computing derivatives of the risk-averse objective function and present some

standard results concerning tensor products of Banach spaces.

2.1 Test Problem

Let H and Z be Hilbert spaces, and let V and W be Banach spaces. I will begin this

chapter by presenting the archetypal test problem used throughout this thesis. This

optimization problem is an extension of the deterministic quadratic program

min
v∈V, z∈Z

j(v, z) :=
1

2
‖Qv − q̄‖2H +

α

2
‖z‖2Z

subject to Av + Bz + b = 0,

(2.1.1)

where Q ∈ L(V ,H) is an observation operator, q̄ ∈ H is the desired state of the

system, A ∈ L(V ,W) is the state operator, B ∈ L(Z,W) is the control operator,

and b ∈ W is an inhomogeneity.

2.1.1 Optimal Control of PDEs

An instance of (2.1.1) of particular interest to this thesis is the optimal control of the

linear elliptic PDE

−∇ · (ε(x)∇v(x)) = z(x), x ∈ D (2.1.2)

v(x) = 0, x ∈ ∂D,

where D ⊂ Rd for d = 1, 2, 3 denotes the physical domain. If v is a solution to (2.1.2)

and w is a sufficiently regular test function such that w(x) = 0 for all x ∈ ∂D, then

integration by parts results in the variational problem:

Given z ∈Z ⊆ H−1(D), find v ∈ V := H1
0 (D) such that∫

D

ε(x)∇v(x) · ∇w(x)dx =

∫
D

z(x)w(x)dx ∀ w ∈ V . (2.1.3)
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For simplicity, let Z = L2(D). Defining a : V × V → R and b : V × Z → R as

a(v, w) :=

∫
D

ε(x)∇v(x) · ∇w(x)dx and b(w; z) :=

∫
D

z(x)w(x)dx, (2.1.4)

the variational problem, (2.1.3), can be written in the equivalent form:

Given z ∈ Z, find v ∈ V such that a(v, w) = b(w; z) ∀ w ∈ V .

Furthermore, assuming ε ∈ L∞(D) is bounded away from zero almost everywhere in

D, i.e.

∃ εmin > 0 such that ε(x) ≥ εmin a.e. in D,

then a is a coercive and continuous bilinear form and hence the Lax-Milgram Theorem

(Theorem 2.7.7 in [29]) ensures the existence of a unique v(z) = v ∈ V which solves

(2.1.3).

Now, since a(v, ·) ∈ V∗ for all v ∈ V and the mapping v ∈ V 7→ a(v, ·) ∈ V∗ is

continuous and linear, there exists a bounded linear operator A ∈ L(V ,V∗) such that

a(v, w) = 〈Av, w〉V∗,V ∀ v, w ∈ V ,

where 〈·, ·〉V∗,V denotes the duality pairing on V . For a more thorough discourse on

the existence of A see Chapter 1.3 in [63]. Similar arguments prove the existence of

the bounded linear operator B ∈ L(Z,V∗) satisfying

b(w; z) = −〈Bz, w〉V∗,V ∀ z ∈ Z, w ∈ V .

Therefore, the PDE (2.1.3) has the same form as the linear constraint in (2.1.1).

The Lax-Milgram Theorem ensures the invertibility of the operator, A, and thus the

solution to (2.1.3) has the specific form

v(z) = −A−1Bz = Sz

where S ∈ L(Z,V) denotes the solution operator. Note that the solution v(z) = v ∈ V

of (2.1.3) depends linearly on the control variable, z ∈ Z.
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Now for any real Hilbert space, H ⊇ V , the optimal control problem is

min
v∈V, z∈Z

j(v, z) :=
1

2
‖v − v̄‖2H +

α

2
‖z‖2Z

subject to Av + Bz = 0.

(2.1.5)

Relating (2.1.5) to (2.1.1), W = V∗, Q is the identity operator, and v̄ = q̄. To make

this concrete, I will set H = L2(D). Furthermore, the assumptions on ε permit the

reformulation of (2.1.5) as the implicitly constrained optimization problem [59]

min
z∈Z

ĵ(z) := j(v(z), z) =
1

2
‖Sz − v̄‖2H +

α

2
‖z‖2Z . (2.1.6)

2.1.2 PDEs with Random Inputs

Similar analysis as above holds when ε in (2.1.3) is replaced by a random field (i.e.

a family of coefficients, ε, indexed by a random variable). Let (Ω,F , P ) denote a

complete probability space. Ω is the set of outcomes, F ⊆ 2Ω is a σ-algebra of events,

and P : F → [0, 1] is a probability measure. The random field coefficient is defined

as ε : Ω×D → R where the map ω ∈ Ω 7→ ε(ω, ·) is P -measurable. Furthermore, to

extend the existence and uniqueness result from the deterministic case, it suffices to

assume that ε ∈ L∞(Ω×D) is bounded away from zero almost everywhere in Ω×D,

i.e.

∃ εmin > 0 such that ε(ω, x) ≥ εmin a.e. in Ω×D. (2.1.7)

For weaker assumptions on ε see Section 1 of [9]. Substituting this random field

coefficient into (2.1.3) gives rise to the PDE

−∇ · (ε(ω, x)∇u(ω, x)) = z(x) x ∈ D, a.e. in Ω (2.1.8)

u(ω, x) = 0 x ∈ ∂D, a.e. in Ω.

As indicated by the notation, u(ω, x), the solution to the state equation, (2.1.8), is

also a random field. Moreover, for almost all ω ∈ Ω, the solution to (2.1.8) satisfies

u(ω) ∈ V .



15

In order to discuss the weak form of (2.1.8), I will require the notion of a Bochner

space. Bochner spaces are formal extensions of the Lebesgue spaces, Lp
P (Ω), for

functions which output into general Banach spaces [125]. The Bochner space Lp
P (Ω;V)

is defined as

Lp
P (Ω;V) :=

{
v : Ω→ V : v strongly measurable,

∫
Ω

‖v(ω)‖qVdP (ω) < +∞
}

for p ∈ [1,∞) and

L∞P (Ω;V) := {v : Ω→ V : v strongly measurable, ess-supω∈Ω ‖v(ω)‖V < +∞}

for p = ∞. Returning to (2.1.8), assumption (2.1.7) and the Lax-Milgram Theorem

ensure the existence of a unique solution, u ∈ L2
P (Ω;V), which solves the variational

problem:

Given z ∈ Z, find u ∈ L2
P (Ω;V) such that∫

Ω

∫
D

ε(ω, x)∇u(ω, x) · ∇w(ω, x)dxdP (ω)

=

∫
Ω

∫
D

z(x)w(ω, x)dxdP (ω) ∀w ∈ L2
P (Ω;V). (2.1.9)

2.1.2.1 The Finite Noise Assumption

To facilitate the numerical solution of (2.1.3), I will work under the finite noise

assumption. Assume there exists a finite vector of M independent random vari-

ables Y : Ω → Γ with Γ := Γ1 × . . . × ΓM with Γk ⊂ R for k = 1, . . . ,M such

that ε(ω, ·) ≡ ε(Y (ω), ·). Furthermore, suppose that each random variable Yk for

k = 1, . . . ,M has Lebesgue density ρk : Γk → [0,∞] and the vector Y has joint

density ρ(y) = ρ1(y1) · . . . · ρM(yM). In this case, the probability measure dP (ω) can

be replaced by the weighted Lebesgue measure ρ(y)dy. Additionally, this assumption
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permits the change of variables in (2.1.9):

Given z ∈ Z, find u ∈ L2
ρ(Γ;V)such that∫

Γ

ρ(y)

∫
D

ε(y, x)∇u(y, x) · ∇w(y, x)dxdy

=

∫
Γ

ρ(y)

∫
D

z(x)w(y, x)dxdy ∀w ∈ L2
ρ(Γ;V) (2.1.10)

where the ρ-weighted Bochner spaces are defined analogously as

Lp
ρ(Γ;V) :=

{
v : Γ→ V : v strongly measurable,

∫
Γ

ρ(y)‖v(y)‖qVdy < +∞
}

for p ∈ [1,∞) and

L∞ρ (Γ;V) :=
{
v : Γ→ V : v strongly measurable, ess-supy∈Γ ρ(y)‖v(y)‖V < +∞

}
.

for p = ∞. If V∗ is separable, then for p ∈ (1,∞), the topological dual spaces

corresponding to Lp
ρ(Γ;V) is isometrically isomorphic with Lp∗

ρ (Γ;V∗) where 1
p
+ 1

p∗
= 1.

For p = 1, the topological dual of L1
ρ(Γ;V) is isometrically isomorphic to L∞ρ (Γ;V∗),

but the same is not true for p =∞. In this case, L∞ρ (Γ;V)∗ ⊃ L1
ρ(Γ;V∗) [37, 125, 126].

The uniform ellipticity (2.1.7) for (2.1.3) can be restated in the image space Γ as

∃ εmin > 0 such that ε(y, x) ≥ εmin a.e. in Γ×D. (2.1.11)

This condition ensures existence and uniqueness of solutions to the variational prob-

lem (2.1.10), but also implies additional regularity of the solution with respect to

y ∈ Γ. Assumption 2.1.11 can be used to prove the continuity result

‖u(y)‖H1(D) ≤ C‖z‖Z a.e. in Γ

where C is some positive constant independent of y ∈ Γ (see [9]). Since the right

hand side is independent of y ∈ Γ, this inequality implies u ∈ L∞ρ (Γ;V).

2.1.2.2 The Weak Form

Define the bilinear form a : V × V × Γ→ R as

a(v, w; y) =

∫
D

ε(y, x)∇v(x) · ∇w(x)dx,
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the linear form b : V × Z → R as in (2.1.4), and the expected value operator,

E : L1
ρ(Γ)→ R, as

E[X] =

∫
Γ

ρ(y)X(y)dy.

Then, the weak form, (2.1.9), can be equivalently written as:

Given z ∈ Z, find u ∈ L2
ρ(Γ;V) such that

E[a(u,w; ·)] = E[b(w; z)] ∀ w ∈ L2
ρ(Γ;V).

(2.1.12)

Throughout this thesis the weak form of the state equation will be denoted

e : L2
ρ(Γ;V)×Z → L2

ρ(Γ;V)∗ which, in this case, is defined as

e(u, z) :=

∫
Γ

ρ(y)
{
a(u(y), · ; y)− b( · ; z)

}
dy.

The uniform ellipticity assumption (2.1.11) and the Lax-Milgram theorem ensures

the existence of a unique solution to the variational problem (2.1.12), or equivalently

Given z ∈ Z, find w ∈ L2
ρ(Γ;V) such that

〈e(w, z), v〉L2
ρ(Γ;V)∗,L2

ρ(Γ;V) = 0 ∀v ∈ L2
ρ(Γ;V).

(2.1.13)

Similar to the discussion concerning the deterministic problem, there exist bounded

linear operators A ∈ L(L2
ρ(Γ;V), L2

ρ(Γ;V)∗) and B ∈ L(Z, L2
ρ(Γ;V)∗) defined by

〈Au,w〉L2
ρ(Γ;V)∗,L2

ρ(Γ;V) =

∫
Γ

ρ(y)a(u(y), w(y); y)dy ∀ u,w ∈ L2
ρ(Γ;V) (2.1.14a)

and

〈Bz, w〉L2
ρ(Γ;V)∗,L2

ρ(Γ;V) = −
∫

Γ

ρ(y)b(w(y); z)dy ∀ w ∈ L2
ρ(Γ;V), z ∈ Z, (2.1.14b)

such that (2.1.13) has the form

Au+ Bz = 0,

The Lax-Milgram theorem ensures the invertibility of A and therefore the solution

to (2.1.13) can be written as

u(z) = −A−1Bz = Sz

where S ∈ L(Z, L2
ρ(Γ;V)) denotes the solution operator. As above, the state, u(z),

depends linearly on the control variable, z ∈ Z.
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2.1.2.3 The Parametric Weak Form

For the numerical solution of (2.1.12) it can be favorable to consider the following the

parametrized variational problem:

Given z ∈ Z, find u : Γ→ V such that

a(u(y), w; y) = b(w; z) a.e. in Γ, ∀ w ∈ V . (2.1.15)

To be concise, I will use the notation ẽ : V × Z × Γ→ V∗ where

ẽ(u(y), z; y) = a(u(y), · ; y)− b( · ; z) = 0

to denote the state equation. Assumption (2.1.11) and the Lax-Milgram theorem

ensure the existence of a point-wise almost everywhere defined function, u : Γ → V ,

which solves the variational problem (2.1.15), or equivalently

Given z ∈ Z, find u : Γ→ V such that

〈ẽ(u(y), z; y), w〉V∗,V = 0 a.e. ∀ w ∈ V . (2.1.16)

The continuity bound on the solution of (2.1.16) implies u ∈ L∞ρ (Γ;V) and finiteness of

the probability measure ρ(y)dy ensures that u ∈ Lp
ρ(Γ;V) for any p ∈ [1,∞) ∪ {∞}.

In this test case, the solution u of (2.1.16) is also a solution of (2.1.13) and, by

uniqueness, these solutions coincide.

Define Â(y) ∈ L(V ,V∗) and B̂(y) ∈ L(Z,V∗) for almost all y ∈ Γ as

〈Â(y)v, w〉V∗,V = a(v, w; y) ∀ v, w ∈ V a.e. in Γ

and

〈B̂(y)z, w〉V∗,V = −b(w; z) ∀ w ∈ V , z ∈ Z a.e. in Γ,

respectively. Then, the weak form, (2.1.15), gives rise to the linear operator equation

Â(y)u(y) + B̂(y)z = 0 a.e. in Γ.
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The Lax-Milgram theorem ensures the point-wise almost everywhere invertibility of

Â and therefore the solution to (2.1.15) can be written as

u(y; z) = −Â−1(y)B̂(y)z = Ŝ(y)z a.e. in Γ

where Ŝ(y) ∈ L(Z,V) for almost all y ∈ Γ denotes the solution operator.

Now for p ∈ [1,∞) let

U = Lp
ρ(Γ;V) = Lp

ρ(Γ;H1
0 (D))

The parameter p of integrability will be chosen in the next section depending on the

risk measure used in the objective function of the optimal control problem. One can

generalize the operators in (2.1.14) as follows. Define

Y = Lp
ρ(Γ;V∗).

Note that Y∗ = Lp∗
ρ (Γ;V) where 1/p+ 1/p∗ = 1. Let A ∈ L(U ,Y) and B ∈ L(Z,Y)

be defined by

〈Au,w〉Y,Y∗ =

∫
Γ

ρ(y)a(u(y), w(y); y)dy ∀ u ∈ U , w ∈ Y∗ (2.1.17a)

〈Bz, w〉Y,Y∗ = −
∫

Γ

ρ(y)b(w(y); z)dy ∀ z ∈ Z, w ∈ Y∗. (2.1.17b)

The definition of A and Â implies

〈Au,w〉Y,Y∗ = E[〈Âu,w〉V∗,V ] ∀ u ∈ U , w ∈ Y∗.

2.1.3 Optimal Control of PDEs with Random Inputs

Consider the optimization problem (2.1.5). When the PDE coefficient, ε, in (2.1.3)

is a random field, the solution, u ∈ U , is also a random field. Hence, the map

y 7→ j(u(y), z) : Γ → R for fixed z ∈ Z is a random variable. This randomness in

the objective function is generally handled using “risk measures.” Risk measures are

operators which act on spaces of function with domain Γ and codomain R such as
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Lq
ρ(Γ) for q ∈ [1,∞) or q =∞. Throughout this thesis, I will denote the risk measure

as

σ : Lq
ρ(Γ)→ R.

Assuming y ∈ Γ 7→ j(u(y), z) is a function in Lq
ρ(Γ), the risk-averse optimization prob-

lem corresponding to the control of the linear elliptic PDE with uncertain coefficients,

(2.1.9), is

min
u∈U , z∈Z

J(u, z) :=
1

2
σ
(
‖u− v̄‖2H

)
+

α

2
‖z‖2Z

subject to Au+ Bz = 0.

(2.1.18)

Recall that for this example,H = Z = L2(D), and that A, B are the operators defined

in (2.1.17). Since the solution to the weak form (2.1.9) satisfies u ∈ U = Lp
ρ(Γ;V),

the map

y ∈ Γ 7→ ‖u(y)− v̄‖2H ∈ Lp/2
ρ (Γ) or, equivalently, u 7→ ‖u− v̄‖2H : U → Lp/2

ρ (Γ).

Therefore, any risk measure used in (2.1.18) must have domain L
p/2
ρ (Γ). Equivalently,

given a risk measure

σ : Lq
ρ(Γ)→ R

one requires the state space

U = L2q
ρ (Γ;V) = L2q

ρ (Γ;H1
0 (D)).

The corresponding image space for the operator (2.1.17) is

Y = L2q
ρ (Γ;V∗) = L2q

ρ (Γ;H−1(D)).

Note that Y∗ = L
2q/(2q−1)
ρ (Γ;V) = L

2q/(2q−1)
ρ (Γ;H1

0 (D)).

2.1.3.1 The Reduced Space Formulation and Differentiability

Optimization problem (2.1.18) can equivalently be written in the unconstrained re-

duced space form as

min
z∈Z

Ĵ(z) := σ(ĵ(z; y)) =
1

2
σ
(
‖u(z)− v̄‖2H

)
+
α

2
‖z‖2Z
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where u = u(z) ∈ U solves Au + Bz = 0. One can employ the adjoint calculus

to compute derivatives of Ĵ(z). Notice that the derivative of Ĵ(z) requires multiple

applications of the chain rule: the derivative of the risk measure, the derivative of

the H-norm, and the derivative of the solution to the state equation. From the

deterministic optimization problem, the objective function,

j(v, z) =
1

2
‖v − v̄‖2H +

α

2
‖z‖2Z ,

is continuously Fréchet differentiable with respect to both v ∈ V and z ∈ Z. For

general functions f : V → R which are Fréchet differentiable, it is unclear whether or

not the mapping u ∈ Lp
ρ(Γ;V) 7→ f(u) is also Fréchet differentiable. The quadratic

objective function, j, is an example where Fréchet derivatives in U = Lp
ρ(Γ;V), p = 2q,

are explicitly computable. In fact, there exists a positive constant C > 0 such that∫
Γ

ρ(y)
∣∣∣1
2
‖u(y)− v̄ + h(y)‖2H −

1

2
‖u(y)− v̄‖2H − 〈u(y)− v̄, h(y)〉H

∣∣∣dy
=

∫
Γ

ρ(y)‖h(y)‖2Hdy ≤ ‖h‖2
L2q

ρ (Γ;H)
≤ C‖h‖2

L2q
ρ (Γ;V)

.

This proves that for fixed z ∈ Z the mapping u ∈ U 7→ j(u, z) is Fréchet differentiable

and the derivative ju(u, z) ∈ L(U , Lq
ρ(Γ)) for fixed z ∈ Z. This result is extended to

more general functions in the following proposition.

Proposition 2.1.1 Let f : V → R be Fréchet differentiable and define β : V×V → R

by the relationship

|f(v + h)− f(v)− f ′(v)h| = β(v, h)‖h‖V . (2.1.19)

Consider u ∈ Lp
ρ(Γ;V) with p ∈ (1,∞) or p =∞ and assume the map

y ∈ Γ 7→ f(u(y)) ∈ Lq
ρ(Γ)

for some q ∈ [1, p). Then f : Lp
ρ(Γ;V)→ Lq

ρ(Γ) is Fréchet differentiable at u if

lim
‖h‖

L
p
ρ(Γ;V)

→0
‖β(u, h)‖Ls

ρ(Γ) = 0, s :=
pq

p− q
> 0. (2.1.20)
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Proof: Plugging u, h ∈ Lp
ρ(Γ;V) into (2.1.19), taking the power q, and integrating

over Γ yields∫
Γ

ρ(y)|f(u(y)+h(y))−f(u(y))−f ′(u(y))h(y)|qdy =

∫
Γ

ρ(y)β(u(y), h(y))q‖h(y)‖qHdy.

Applying Hölder’s inequality to the right hand side gives∫
Γ

ρ(y)β(u(y), h(y))q‖h(y)‖qHdy ≤

(∫
Γ

ρ(y)β(u, h)sdy

)q/s(∫
Γ

ρ(y)‖h‖pHdy

)q/p

= ‖β(u, h)‖qLs
ρ(Γ)‖h‖

q
Lp

ρ(Γ;H)

where s satisfies 1
s/q

+ 1
p/q

= 1 (i.e. s = pq
p−q

). Thus, if (2.1.20) holds, then

lim
‖h‖

L
p
ρ(Γ;V)

→0
‖f(u+ h)− f(u)− f ′(u)h‖Lq

ρ(Γ) = 0

and f : Lp
ρ(Γ;V)→ Lq

ρ(Γ) is Fréchet differentiable. 2

Remark 2.1.2 For fixed z ∈ Z, the quadratic objective function,

f(u) = j(u, z) =
1

2
‖v − v̄‖2H +

α

2
‖z‖2Z ,

satisfies the assumptions of Proposition 2.1.1 for p = 2q. Furthermore, s = 2q and

‖β(v, h)‖L2q
ρ (Γ) = ‖h‖L2q

ρ (Γ;V).

To conclude the formulation of optimization problem (2.1.18), I will assume that

σ : Lq
ρ(Γ)→ R for q ∈ [1,∞).

By the uniform ellipticity assumption, (2.1.11), u ∈ L∞ρ (Γ;V) and one can choose the

state space

U := L2q
ρ (Γ;V).

Assuming the risk measure, σ, is Hadamard differentiable, the Fréchet differentiability

of the map, u 7→ ‖u− v̄‖2H, guarantees that the map,

u 7→ σ(‖u− v̄‖2H),
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is Hadamard differentiable as a map from U := L2q
ρ (Γ;V) into R. Therefore, J(u, z) =

1
2
σ(‖u− v̄‖2H) + α

2
‖z‖2Z is Hadamard differentiable with respect to u ∈ U = L2q

ρ (Γ;V)

and Fréchet differentiable with respect to z ∈ Z.

2.1.3.2 The Adjoint Calculus

Recall σ : Lq
ρ(Γ)→ R for q ∈ [1,∞), V = H1

0 (D), U = L2q
ρ (Γ;V), and Y = L2q

ρ (Γ;V∗).

I will derive the adjoint calculus for this optimization problem by differentiating the

Lagrangian functional, L : U × Z × Y∗ → R given by

L(u, z, λ) :=
1

2
σ(‖u− v̄‖2H) +

α

2
‖z‖2Z + 〈Au+ Bz, λ〉Y,Y∗ .

The Lagrangian is Fréchet differentiable with respect to both λ ∈ Y∗ and z ∈ Z.

On the other hand, L is Hadamard differentiable with respect to u ∈ U since the

risk measure, σ, is Hadamard differentiable. Setting the Fréchet derivative of L with

respect to the Lagrange multiplier, λ ∈ Y∗, to zero returns the state equation (2.1.13).

Differentiating L with respect to the state variable u ∈ U and setting the Hadamard

derivative to zero results in the adjoint equation

0 =
∂

∂u
L(u, z, λ)δu = E[∇σ(‖u− v̄‖2H)〈u− v̄, δu〉H] + 〈Aδu, λ〉Y,Y∗

= E[∇σ(‖u− v̄‖2H)〈u− v̄, δu〉H] + 〈A∗λ, δu〉U∗,U (2.1.21)

where A∗ ∈ L(Y∗,U∗). For the linear elliptic PDE (2.1.8), the following relationship

holds

〈u,A∗w〉U ,U∗ = 〈Au,w〉Y,Y∗ = E[〈Âu,w〉V∗,V ] = E[〈u, Â∗w〉V,V∗ ]

for all u ∈ U , w ∈ Y∗. Therefore, the adjoint operators Â(y)∗ ∈ L(V ,V∗) for almost

all y ∈ Γ and A∗ ∈ L(U ,U∗) satisfy

〈u,A∗w〉U ,U∗ = E[〈u, Â∗w〉V,V∗ ] ∀ u ∈ U , w ∈ Y∗.

Substituting this equivalent parametrized expression for A in (2.1.21) yields

0 = E[∇σ(‖u− v̄‖2H)〈u− v̄, δu〉H + 〈Â∗λ, δu〉V∗,V ].



24

Now, since H = L2(D) ⊂ V∗ = H−1(D), the adjoint equation can be reformulated as

0 = E[∇σ(‖u− v̄‖2H)〈I(u− v̄), δu〉V∗,V + 〈Â∗λ, δu〉V∗,V ]

= E[〈∇σ(‖u− v̄‖2H)I(u− v̄) + Â∗λ, δu〉V∗,V ]

where I ∈ L(H,V∗) denotes the injection operator from H into V∗.

As with the parametrized weak form, (2.1.15), it may be beneficial for the numer-

ical solution of (2.3.1) to consider the parametrized adjoint equation

Â(y)∗λ(y) +∇σ(‖u− v̄‖2H)I(u(y)− v̄) = 0 (2.1.22)

where u ∈ U = L2q
ρ (Γ;V). Since σ ∈ Lq

ρ(Γ), it holds that ∇σ(‖u− v̄‖2H) ∈ Lq/(q−1)
ρ (Γ).

Together with I(u− v̄) ∈ L2q
ρ (Γ;V∗), one obtains

∇σ(‖u− v̄‖2H)I(u− v̄) ∈ L2q/(2q−1)
ρ (Γ;V∗).

Moreover, the Lax-Milgram theorem ensures the existence of a unique solution, λ(y) ∈

V for almost every y ∈ Γ, to (2.1.22). Additionally, the uniform ellipticity assumption

implies that ‖Â(·)−∗‖ ∈ L∞ρ (Γ). Hence, the solution of the parametrized form of the

adjoint equation (2.1.22) satisfies λ ∈ Y∗ = L
2q/(2q−1)
ρ (Γ;V). For this linear elliptic

test problem, the solution to the parametrized adjoint equation, (2.1.22), and the

adjoint equation, (2.1.21), coincide due to uniqueness of solutions. In its strong form,

the parametrized adjoint equation, (2.1.22), corresponds to the PDE

−∇ · (ε(y, x)∇λ(y, x)) +∇σ(‖u− v̄‖2H)(u(y, x)− v̄(x)) = 0 x ∈ D, a.e. in Γ

λ(y, x) = 0 x ∈ ∂D, a.e. in Γ.

Finally, the gradient of Ĵ(z) can be computed as

∇Ĵ(z) =
∂

∂z
L(u(z), z, λ(z))

where u(z) = u ∈ U solves the state equation (2.1.15) and λ(z) = λ ∈ Y∗ solves the
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adjoint equation (2.1.22). Thus, the gradient is given as follows

∇Ĵ(z)δz = α〈z, δz〉Z + 〈Bδz, λ〉Y,Y∗

= 〈αz, δz〉Z + E[〈B̂δz, λ〉V∗,V ]

= 〈αz, δz〉Z + E[〈B̂∗λ, δz〉Z ]

= 〈αz + E[B̂∗λ], δz〉Z

where for a.a. y ∈ Γ, B̂(y)∗ ∈ L(V ,Z) and

y 7→ B̂(y)∗λ(y) : Γ→ L(Z, L2q/(2q−1)
ρ (Γ)),

since in our example ‖B̂(·)∗‖ ∈ L∞ρ (Γ).

The final equality above is due to Fubini’s theorem [49]. This gives the following

expression for the gradient

∇Ĵ(z) = αz + E[B̂∗λ].

2.1.3.3 Risk Measures

For demonstration purposes, I will now compute the derivative of Ĵ(z) for a class of

risk measures paying special attention to the integrability requirements of the risk

measure. Members of the class under consideration have the form

σ(Y ) = E[Y ] + cE[℘(Y − E[Y ])]

where ℘ : R → R is assumed to be differentiable. Particular members of this class

of risk measures are the “mean plus moment” risk measures and, with some care,

the derivations presented here apply to the “mean plus semi-deviation” risk measure.

Computing the derivative of σ yields

E[∇σ(Y )η] = E[η] + cE[℘′(Y − E[Y ])(η − E[η])]

= E[η] + cE[℘′(Y − E[Y ])η]− cE[℘′(Y − E[Y ])]E[η]

= E
[
η + c

(
℘′(Y − E[Y ])− E

[
℘′(Y − E[Y ])

])
η
]
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which gives the gradient of σ as

∇σ(Y ) = 1 + c
(
℘′(Y − E[Y ])− E

[
℘′(Y − E[Y ])

])
.

As a first example, I will focus on the mean plus variance risk measure. In this case,

℘(Y ) = 1
2
Y 2 and σ has domain L2

ρ(Γ). Consequently, the state space is U = L4
ρ(Γ;V)

so that for u ∈ U the map y 7→ ‖u(y)−v̄‖2H ∈ L2
ρ(Γ). For this risk measure, ℘′(Y ) = Y

and the derivative of σ has the particularly simple form

∇σ(Y ) = 1 + c(Y − E[Y ]) ∈ L2
ρ(Γ).

In the case of mean plus semi-deviation, ℘(Y ) = [Y ]+ = max{Y, 0}, and

σ : L1
ρ(Γ) → R. In this case the state space is U = L2

ρ(Γ;V). Clearly, ℘ is not

differentiable at Y = 0, but is continuously differentiable everywhere in R \ {0}. In

fact, ℘′(Y ) ≡ 1 if Y > 0 and ℘′(Y ) ≡ 0 if Y < 0. Therefore, if Y ∈ L1
ρ(Γ) and

Y 6= E[Y ] almost everywhere in Γ, then

∇σ(Y ) =

 1 + c(1− Pr(Y > E[Y ])) if Y > E[Y ]

1− cPr(Y > E[Y ]) if Y < E[Y ].

Clearly ∇σ(Y ) ∈ L∞ρ (Γ) for all Y ∈ L1
ρ(Γ) such that Y 6= E[Y ] almost everywhere in

Γ since |∇σ(Y )| ≤ 1 + c.

2.2 General Problem Formulation

Let V and Z be reflexive Banach spaces, and let W be a Banach space. Throughout

this thesis, V will denote the deterministic state space and Z will denote the control

space. As with the test problem, the stochastic program considered in this thesis is

an extension of the deterministic equality constrained problem

min
v∈V, z∈Z

j(v, z) subject to ẽ(v, z) = 0, (2.2.1)

where the objective function, j : V × Z → R, corresponds to the “cost” associated

with a given state v ∈ V and a given control z ∈ Z and the equality constraint,
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ẽ : V × Z → W , represents the governing dynamics (PDE or system of PDEs). The

stochastic variant of (2.2.1) is generated by adding uncertainty or randomness to the

state operator, ẽ. Throughout this thesis, the control variable will be deterministic

and thus adding uncertainty to ẽ induces randomness in the state variable. The

stochastic state space will be denoted U . As seen in the test problem, the uncertainty

in the state variable induces uncertainty in the objective function which is typically

handled with risk measures. The risk-averse optimization problem corresponding to

(2.2.1) is

min
u∈U , z∈Z

σ
(
j(u, z)

)
subject to e(u, z) = 0, (2.2.2)

where σ is a risk measure, and e : U ×Z → Y for some real Banach space Y denotes

the stochastic state equation. This goal of this section is to make clear the functional

analytic framework for (2.2.2) by making assumptions on function spaces as well as

the objective function and state equation. The assumption presented here ensure well

posedness of (2.2.2).

2.2.1 The State Equation

To begin, I will present assumptions on that state equation to ensure (2.2.2) is well

posed. Let (Ω,F , P ) be a complete probability space where Ω is the set of outcomes,

F ⊆ 2Ω is a σ-algebra of events, and P : F → [0, 1] is a probability measure. When

uncertainty is added to the deterministic state operator ẽ, I will denote the stochastic

variant as ẽ(ω) : V × Z → W for almost every ω ∈ Ω. My first assumption is

a common assumption in the literature and is known as the “Finite Dimensional

Noise Assumption.” Finite dimensional noise assumes the operator, ẽ(ω), has a finite

dependence on the random variable ω ∈ Ω. This finite dependence will facilitate the

numerical solution of the optimization problem (2.2.2).

Assumption 2.2.1 (Finite Dimensional Noise) There exists a vector of random
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variables, Y = [Y1, . . . , YM ] : Ω→ Γ ⊆ RM , such that

ẽ(ω) ≡ ẽ(Y (ω))

where Yi : Ω→ Γi ⊆ R are independent random variables with image space

Γi = [ai, bi], ai < bi, and Lebesgue density ρi : Γi → R for i = 1, . . . ,M . The joint

image space of Y is Γ =
∏M

i=1 Γi and the joint density is ρ =
∏M

i=1 ρi.

This assumption allows for the change of variables

ẽ(y)(v, z) = ẽ(v, z; y) = 0 ∀ y ∈ Γ. (2.2.3)

Furthermore, this permits the use of finite sampling and polynomial approximation

schemes in solving (2.2.3) (c.f. [9, 10, 11]). The Karhunen-Loéve (KL) expansion of

a random field is an infinite dimension extension of the singular value decomposition

(SVD) [64, 71, 103]. Truncating the KL expansion gives a finite noise approximation

of the random field and this truncation is often used to satisfy Assumption 2.2.1. I

will discuss this expansion technique in more detail in Section 2.4.

The parametrized state equation (2.2.3) will be utilized when solving (2.2.2) nu-

merically, but will not be used in the analysis of (2.2.2). Let Y be a space of functions

on Γ with values in W . Furthermore, let U be a space of functions on Γ with values

in V . The state equation used for analysis is

e(u, z) = 0 (2.2.4)

where e : U × Z → Y . To make the spaces Y and U concrete and to make the

definition of risk measures and other quantities coherent, I will assume integrability

of the functions in U and Y with respect to y ∈ Γ. This integrability will ensure that

the solution to the state equation and elements in Y have certain statistical moments.

Assumption 2.2.2 (Integrability of the State) The state space for (2.2.4) is the

Bochner space

U := Lp
ρ(Γ;V) for p ∈ (1,∞) or p =∞
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and the parametrized state operator satisfies

(u, z, y) 7→ ẽ(u(y), z; y) : U × Z × Γ→ Y := Ls
ρ(Γ;W) (2.2.5)

for some s ∈ [1,∞).

Remark 2.2.3 Equation 2.2.5 in Assumption 2.2.2 implies

y 7→ 〈λ(y), ẽ(u(y), z; y)〉W∗,W : Γ→ L1
ρ(Γ)

for all λ ∈ Y∗ := Ls∗
ρ (Γ;W) with 1

s
+ 1

s∗
= 1, u ∈ U , and z ∈ Z or, equivalently,

(u, z, λ) 7→ 〈λ, ẽ(u, z; ·)〉W∗,W : U × Z × Y∗ → L1
ρ(Γ). (2.2.6)

The state equation, (2.2.4), is thus defined by the relationship

〈λ, e(u, z)〉Y∗,Y =

∫
Γ

ρ(y)〈λ(y), ẽ(u(y), z; y)〉W∗,Wdy = E[〈λ, ẽ(u, z; ·)〉W∗,W ] (2.2.7)

for all λ ∈ Y∗.

To ensure that optimization problem (2.2.2) is well defined, for each z ∈ Z, there

must exist u(z) = u ∈ U such that (2.2.4) is satisfied. To simplify presentation, I will

use the following notation to denote partial Fréchet derivatives

eu(u, z) :=
∂

∂u
e(u, z) ∈ L(U ,Y)

and similarly for derivatives with respect to z ∈ Z. I will employ similar notation for

derivatives of the objective function j.

Assumption 2.2.4 (Existence of Solution Mapping)

• For all z ∈ Z there exists a unique u ∈ U such that e(u, z) = 0;

• There exists an open set Σ ⊂ U × Z with

S := {(u, z) ∈ U × Z : e(u, z) = 0} ⊂ Σ

such that e(u, z) are Fréchet differentiable on Σ;
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• The inverse eu(u, z)
−1 ∈ L(Y ,U) exists for all (u, z) ∈ S.

Assumptions 2.2.4 ensure that the Implicit Function Theorem (Theorem 1.41 in [63])

holds for each z ∈ Z. In addition to Assumption 2.2.4, I will require differentiability

of the parametrized state operator, ẽ.

Assumption 2.2.5 Consider the parametrized state operator, ẽ(y) : V ×Z → W for

fixed y ∈ Γ. Then the mapping

(u, z, y) 7→ ẽ(u, z; y) : U × Z × Γ→ Y

is Fréchet differentiable with respect to (u, z) ∈ Σ. Furthermore, the partial derivative,

ẽu, has a bounded inverse

ẽu(u(y), z; y)
−1 ∈ L(W ,V) ∀ (u, z) ∈ Σ, a.e. in Γ

and the partial derivative, ẽz, satisfies

E[〈λ, ẽz(u, z; ·)δz〉W∗,W ] = E[〈ẽ∗z(u, z; ·)λ, δz〉Z∗,Z ]

= 〈E[ẽ∗z(u, z; ·)λ], δz〉Z∗,Z . (2.2.8)

Assumption 2.2.5 ensures the Fréchet derivatives of the state operator, e, can be

written in terms of the Fréchet derivatives of the parametrized state operator, ẽ,

〈λ, eu(u, z)δu〉Y∗,Y =

∫
Γ

ρ(y)〈λ(y), ẽu(u(y), z; y)δu〉W∗,Wdy

and

〈λ, ez(u, z)δz〉Y∗,Y =

∫
Γ

ρ(y)〈λ(y), ẽz(u(y), z; y)δz〉W∗,Wdy.

Moreover, equation 2.2.8 is a condition similar to the conclusion of Fubini’s Theorem

[49].
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2.2.2 The Objective Function

Assumption 2.2.4 ensures the existence of a unique solution, u ∈ U , to the state

equation (2.2.4) for all z ∈ Z. Furthermore, this assumption guarantees the well-

posedness of the reduced formulation

min
z∈Z

Ĵ(z) := σ(ĵ(z; y)) (2.2.9)

for appropriate risk measures σ. Under the finite noise assumption, the reduced

objective function is

y 7→ ĵ(z; y) := j(u(y; z), z) : Γ→ R.

To make concrete the notion of risk measure, I will require that the map y 7→ ĵ(z; y)

is sufficiently integrable.

Assumption 2.2.6 (Integrability of the Objective Function) For u ∈ U =

Lp
ρ(Γ;V), the mapping y ∈ Γ 7→ j(u(y), z) ∈ Lq

ρ(Γ) for q ∈ [1, p).

Remark 2.2.7 Assumption 2.2.6 is equivalent to

(u, z) 7→ j(u, z) : U × Z → Lq
ρ(Γ).

Of particular interest to this thesis are derivative based algorithms. These algo-

rithms require differentiability of j(v, z). In addition to differentiability of j(v, z), I

will require differentiability of the risk measure, σ(Y ). Since Ĵ(z) = σ(ĵ(z; y)) is a

composite function, the chain rule must hold for the derivatives of σ(Y ).

Assumption 2.2.8 (Differentiability of the Objective Function)

• The deterministic objective function, j : V × Z → R, is Fréchet differentiable

with respect to v ∈ V and for fixed z ∈ Z the functional β1 : V × Z × V → R

defined by

|j(v + h, z)− j(v, z)− jv(v, z)h| = β1(v, z, h)‖h‖V
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satisfies

lim
‖h‖

L
p
ρ(Γ;V)

→0
‖β1(u, z, h)‖Lθ

ρ(Γ) = 0 where θ :=
pq

p− q
> 0

for each u ∈ U = Lp
ρ(Γ;V).

• The deterministic objective function, j, is also Fréchet differentiable with respect

to z ∈ Z and for fixed v ∈ V the functional β2 : V × Z × Z → R defined by

|j(v, z + h)− j(v, z)− jz(v, z)h| = β2(v, z, h)‖h‖Z

satisfies, for fixed u ∈ U ,

lim
‖h‖Z→0

‖β2(u, z, h)‖Lq
ρ(Γ) = 0 ∀ z ∈ Z.

• The partial derivative, jz(u, z) for (u, z) ∈ U × Z, satisfies

E[jz(u, z)δz] = E[jz(u, z)]δz ∀ δz ∈ Z.

Assumptions 2.2.8 and Proposition 2.1.1 ensure that the deterministic objective func-

tion is Fréchet differentiable with respect to u ∈ U and z ∈ Z. Furthermore, Assump-

tion 2.2.6 implies that

ju(u, z) ∈ L(U , Lq
ρ(Γ)) and jz(u, z) ∈ L(Z, Lq

ρ(Γ)).

The final condition in Assumption 2.2.8 is related to the conclusions of Fubini’s The-

orem [49].

Since for u ∈ U and z ∈ Z the function y 7→ j(u(y), z) ∈ Lq
ρ(Γ), our risk measure

must satisfy

σ ∈ Lq
ρ(Γ).

Of course, since
∫

Γ
ρ(y)dy = 1, any risk measure σ ∈ Lr

ρ(Γ) with r ≥ q satisfies

σ ∈ Lq
ρ(Γ).

To guarantee the existence of derivatives of the reduced objective function, Ĵ(z),

I will require the following assumption on the risk measure.
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Assumption 2.2.9 (Differentiability of Risk Measure) The risk measure,

σ : Lq
ρ(Γ)→ R, is Hadamard differentiable.

Assumption 2.2.9 implies that Ĵ(z) is at least Fréchet differentiable and a gradient

exists if Z is a Hilbert space. Note that Hadamard differentiability is required since

Hadamard differentiability is the weakest form of differentiability for which the chain

rule for computing derivatives of composite functions holds. For a review of the vari-

ous notions of differentiability in linear topological spaces see [6, 7, 107]. Furthermore,

to reinforce notation, Table 2.1 contains a description of the numerous powers used

throughout this section in the definition of the Lebesgue and Bochner spaces.

Power Range Description

p [1,∞) ∪ {∞} Integrability of state space, U

q Integrability of (u, z) 7→ j(u, z) for (u, z) ∈ U × Z

and domain of risk measure

s [1,∞) ∪ {∞} Integrability of codomain of the state operator, Y

Table 2.1: Description of the powers for the Lebesgue and Bochner spaces used in

the assumptions on the objective function and state equation

To ensure the existence of at least one minimizer of (2.2.9), I require that Ĵ(z) is

weakly lower semi-continuous and satisfies the infinity property [63].

Assumption 2.2.10 (Infinity Property) For all sequences, {zn} ⊂ Z such that

‖zn‖Z → +∞, the objective function satisfies Ĵ(zn)→ +∞.

In addition, a unique minimizer is guaranteed when Ĵ(z) is uniformly convex.

An extremely useful class of deterministic objective functions, j : V × Z → R, is

the class of “separable” objective functions

j(v, z) = j1(v) + j2(z)
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where j1 : V → R is convex, j2 : Z → R is uniformly convex, and j(v, z) satisfies As-

sumptions 2.2.8 and 2.2.6. This is the case for quadratic control or least squares type

problems with regularization. For these separable objective functions, the implicitly

constrained optimization problem (2.2.9) can be written as

min
z∈Z

Ĵ(z) := σ
(
j1(u(y; z)) + j2(z)

)
.

The class of separable objective functions warrants a few assumptions on the risk

measure, σ(Y ). Note j2(z) does not depend on y ∈ Γ and thus should not contribute

to the risk associated with the state u ∈ U . Furthermore, since j(v, z) = j1(v)+ j2(z)

is convex, σ(Y ) should maintain this convexity.

Assumption 2.2.11 (Coherent Risk Measure) Assume σ : Lq
ρ(Γ)→ R satisfies

• Convexity: For all Y1, Y2 ∈ Lq
ρ(Γ) and λ ∈ [0, 1],

σ(λY1 + (1− λ)Y2) ≤ λσ(Y1) + (1− λ)σ(Y2);

• Monotonicity: For all Y1, Y2 ∈ Lq
ρ(Γ) such that Y1 ≤ Y2 a.e.,

σ(Y1) ≤ σ(Y2);

• Translation Equivariance: For all Y ∈ Lq
ρ(Γ) and c ∈ R,

σ(Y + c) = σ(Y ) + c;

• Positive Homogeneity: For all c > 0 and Y ∈ Lq
ρ(Γ),

σ(cY ) = cσ(Y ).

Risk measures which satisfy Assumptions 2.2.11 are called coherent in the sense of

Artzner, Delbaen, Eber, and Heath [5]. These assumptions imply the following form

for the separable objective function

Ĵ(z) = σ
(
j1(u(y; z))

)
+ j2(z).

Furthermore, Ĵ(z) is uniformly convex whenever σ(j1(u(y; z))) is convex.
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Remark 2.2.12 Two particularly important coherent risk measures are the mean

plus semi-deviation risk measure and the conditional value-at-risk (CVaR) risk mea-

sure. The mean plus semi-deviation risk measure of order q is the risk measure

σr : Lq
ρ(Γ)→ R defined by

σr(Y ) := E[Y ] + cE[[Y − E[Y ]]q+]1/q

for 0 ≤ c ≤ 1 where [x]+ = max{x, 0}, [100]. On the other hand, the CVaR risk

measure is σ : L1
ρ(Γ)→ R defined by

σCVaR(Y ) := min
t∈R

{
t+ cE[[Y − t]+]

}
for c > 1 [117]. These two coherent risk measures fall into a more general class of

risk measures defined by the auxiliary function σ̂r : R× Lq
ρ(Γ)→ R defined by

σ̂r(t, Y ) := t+ cE[[Y − t]q+]1/q.

That is, the mean plus semi-deviation and CVaR risk measures can be expressed as

σr(Y ) = σ̂r(E[Y ], Y ) and σCVaR(Y ) = min
t∈R

σ̂1(t, Y ),

respectively. Furthermore, these two coherent risk measures are Hadamard differen-

tiable, i.e. they satisfy both Assumption 2.2.8 and Assumption 2.2.11.

2.3 The Adjoint Calculus

I will now derive an adjoint calculus for computing the derivative of Ĵ(z) (c.f. see

Chapter 1.6 of [63] for a detailed discussion of adjoints). To clarify notation, I will

denote the derivative of Ĵ(z) as Ĵ ′(z) ∈ Z∗. For the risk measure σ, the derivative

σ′(Y ) can be associated with ∇σ(Y ) ∈ Lq∗
ρ (Γ) where 1 = 1

q
+ 1

q∗
and σ′(Y )s =

E[∇σ(Y )s] for all s ∈ Lq
ρ(Γ).

To derive the adjoint calculus, consider the Lagrangian functional

L : U × Z × Y∗ → R
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defined by

L(u, z, λ) := σ(j(u, z)) + 〈λ, e(u, z)〉Y∗,Y .

Note that the Lagrangian is at least Hadamard differentiable with respect to u ∈ U

and z ∈ Z by Assumptions 2.2.8, 2.2.9, and 2.2.4. Furthermore, L is Fréchet differ-

entiable with respect to the Lagrange multiplier λ ∈ Y∗ by linearity. The Lagrangian

functional is often used as a local lower support function for proving optimality con-

ditions and satisfies the condition

〈Ĵ ′(z), δz〉Z∗,Z = 〈Lz(u, z, λ), δz〉Z∗,Z

whenever u ∈ U and λ ∈ Y∗ satisfy

Lu(u, z, λ) = 0 and Lλ(u, z, λ) = 0.

Differentiating L with respect to the Lagrange multiplier λ ∈ Y∗ and setting the

derivative equal to zero returns the state equation (2.2.4). On the other hand, setting

the derivative of L with respect to u ∈ U to zero yields the adjoint equation

0 = Lu(u, z, λ)δu = E[∇σ(j(u, z))ju(u, z)δu] + 〈λ, eu(u, z)δu〉Y∗,Y

= E[∇σ(j(u, z))ju(u, z)δu] + 〈eu(u, z)
∗λ, δu〉U∗,U

for all δu ∈ U where ju(u, z) ∈ L(U , Lq
ρ(Γ)) and eu(u, z)

∗ ∈ L(Y∗,U∗) denotes the

adjoint of eu(u, z). Now, unraveling the duality pairing, 〈 · , · 〉U∗,U , and employing

Assumption 2.2.5, the adjoint equation can be written as

0 = E[〈∇σ(j(u, z))ju(u, z) + ẽu(u, z; ·)∗λ, δu〉V∗,V ] ∀ δu ∈ U . (2.3.1)

As in the test case, it may be beneficial to consider the parametrized adjoint

equation

ẽu(u(y), z; y)
∗λ(y) +∇σ(j(u, z))ju(u(y), z) = 0 a.e. ∈ Γ. (2.3.2)

Assumption 2.2.5 ensures that ẽu(u, z; y) has a bounded inverse almost every where

in Γ; therefore, (2.3.2) has a unique solution, λ(y) ∈ W∗ for almost all y ∈ Γ. By

Assumption 2.2.4, the solutions to (2.3.2) and (2.3.1) coincide.
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Finally, differentiating the Lagrangian with respect to z ∈ Z and applying As-

sumptions 2.2.8 and 2.2.5 yields

Lz(u, z, λ)δz = E[∇σ(j(u, z))jz(u, z)δz] + 〈λ, ez(u, z)δz〉Y∗,Y

= 〈E[∇σ(j(u, z))jz(u, z) + ẽ∗z(u, z; ·)λ], δz〉Z∗,Z

for all δz ∈ Z where jz(u, z) ∈ L(Z, Lq
ρ(Γ)) and e∗z(u, z) ∈ L(Y∗,Z∗) denotes the

adjoint of ez(u, z). Therefore, for fixed z ∈ Z, if u(z) = u ∈ U solves (2.2.4) and

λ(z) = λ ∈ Y∗ solves (2.3.2), then the derivative of Ĵ is

Ĵ ′(z) = E[∇σ(j(u, z))jz(u, z) + ẽ∗z(u, z; ·)λ]. (2.3.3)

Remark 2.3.1 If σ is a coherent risk measure (i.e. satisfies Assumptions 2.2.11)

and j is a separable objective function with

j(v, z) = j1(v) + j2(z),

then (2.3.3) can be simplified to

Ĵ ′(z) = E
[
ẽ∗z(u, z; ·)λ

]
+ j′2(z) (2.3.4)

where u = u(z) ∈ U solves (2.2.4) and λ = λ(z) ∈ W∗ solves

ẽ∗u(u(y), z; y)λ+∇σ(j1(u))j
′
1(u(y)) = 0. (2.3.5)

Now, returning to the test problem (2.1.1), the objective function j is separable so

Remark 2.3.1 applies. Recall the objective function is given as j(v, z) = j1(v) + j2(z)

where

j1(v) =
1

2
‖Qv − q̄‖2H and j2(z) =

α

2
‖z‖2Z .

The adjoint equation (2.3.5) for this specific objective function is

Â(y)∗λ(y) +∇σ(‖Qu− q̄‖2H)Q∗(Qu(y)− q̄) = 0

where Q∗ ∈ L(H∗,V∗) denotes the adjoint operator associated with Q and u = u(z) ∈

U solves the state equation for a given z ∈ Z. On the other hand, the derivative of
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Ĵ(z) is handled in a similar fashion to that of (2.3.4). First notice that the derivative

of the deterministic objective function, j(v, z), with respect to z ∈ Z in the direction

s ∈ Z satisfies

〈jz(v, z), s〉Z∗,Z = 〈αz, s〉Z = 〈αRz, s〉Z∗,Z

where R ∈ L(Z,Z∗) is the unique operator satisfying 〈Rz, s〉Z∗,Z = 〈z, s〉Z . This

gives rise to the following expression for the derivative (2.3.4)

Ĵ ′(z) = αRz + E[B̂∗λ]

where λ ∈ Y∗ solves the adjoint equation. Note that since Z is assumed to be

a Hilbert space and Ĵ(z) is at least Hadamard differentiable by Assumption 2.2.8,

Riesz Representation Theorem (e.g. see Theorem 1.4 in [63]) ensures the existence

of a representer for Ĵ ′(z) in Z (i.e. the gradient). The above calculations give the

following expression for the gradient of Ĵ(z)

∇Ĵ(z) = αz + w

where w = w(z) ∈ Z solves

Rw = E
[
∇σ(‖Qu− q̄‖2H)B∗λ

]
,

u = u(z) ∈ U solves the state equation, and λ = λ(z) ∈ Y∗ solves the adjoint

equation.

2.4 The Karhunen-Loéve Expansion

In this section, I will discuss a common technique for satisfying the finite noise as-

sumption, Assumption 2.2.1. This technique is known as the Karhunen-Loéve (KL)

expansion [64, 71]. The KL expansion gives an infinite series representation of a given

random field. Often, this series representation is truncated and the original random

field is replaced by a partial sum.
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Now, let ε : Ω×D → R be a random field on the probability space (Ω,F , P ) with

finite second order moments, ε ∈ L2
P (Ω;L2(D)). Associated with ε is the covariance

function

Cε(x, χ) := E
[
(ε(·, x)− E[ε(·, x)])(ε(·, χ)− E[ε(·, χ)])

]
where E : L1

P (Γ) → R denotes the expected value operator E[X] =
∫

Ω
X(ω)dP (ω).

The covariance function, Cε(x, χ), describes the spatial correlation of the random field

ε. Furthermore, the covariance function induces a linear operator, Tε ∈ L(L2(D), L2(D)),

defined by

Tεφ(x) =

∫
D

Cε(x, χ)φ(χ)dχ.

Tε is a compact, positive, and self adjoint operator. Furthermore, Mercer’s Theorem

ensures the existence of an orthonormal basis of eigenfunctions {εk}∞k=1 ⊂ L2(D) and

eigenvalues {λk}∞k=1 ⊂ (0,∞) such that

Cε(x, χ) =
∞∑

k=1

λkεk(x)εk(χ)

(see Theorem 11 in Chapter 30, Section 5 of [69]). These eigenfunctions and eigen-

values induce the following decomposition of the random field ε,

ε(ω, x) = E[ε(·, x)] +
∞∑

k=1

√
λkεk(x)Yk(ω) (2.4.1)

where Yk(ω) ∈ L2
P (Ω) satisfy

E[Yk] = 0 and E[YjYk] = δjk ∀ j, k = 1, 2, . . .

The expansion (2.4.1) is known as the KL expansion of the random field ε. The

convergence rate of the partial sums of the expansion (2.4.1) is completely dependent

on the decay of the eigenvalues, λk, which depend on the covariance function (see

[106]). Such decay induces anisotropy in the random field ε. Anisotropy here means

that some directions, Γk, have a larger effect on the random field ε than others. As

mentioned above, a common practice is to replace the random field ε with a truncated



40

KL expansion, i.e.

ε(ω, x)← εM(ω, x) := E[ε(·, x)] +
M∑

k=1

√
λkεk(x)Yk(ω).

2.5 Tensor Product Function Spaces

The general formulation dictates the use of the Bochner space, Lq
ρ(Γ;V), as the

stochastic state spaces. Furthermore, in constructing a method for the solution of

ẽ(u(y), z; y) = 0 for all y ∈ Γ and fixed z ∈ Z, the stochastic collocation method

seeks to interpolate u = u(y) ∈ V on a finite set of knots in the parameter space,

Γ. Therefore, an application of stochastic collocation will require a finite number of

solves of the state equation ẽ(u(y), z; y) = 0. As is common in approximation theory,

convergence of this interpolant is highly dependent on the regularity of u = u(y) with

respect to the parameter, y ∈ Γ. Assumption 2.2.2 guarantees that the solution u is

a member of the Bochner space

u ∈ U := Lq
ρ(Γ;V) for some 1 ≤ q ≤ ∞.

Moreover, Assumption 2.2.4 implies u = u(y) exists for every y ∈ Γ. Hence, it is

often realistic to assume

u ∈ C0
ρ(Γ;V).

In the case of linear elliptic PDEs with uncertain inputs, certain regularity of these

coefficients on the parameters, y ∈ Γ, ensures u ∈ C∞ρ (Γ;V). In fact, Assump-

tion 3.2.1 implies this fact for general constraints. In this section, I will develop

theory for three classes of tensor product spaces. First, I will discuss the construction

of Bochner spaces. Secondly, I will present a few results concerning C0
ρ(Γ;V), and

finally, I will provide some results for C0
ρ(Γ).

The goal of this Bochner space discussion is to relate Lq
ρ(Γ;V) with the spaces
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Lq
ρ(Γ) and V . First, define the tensor product space

Lq
ρ(Γ)⊗ V :=

{
N∑

n=1

fnvn : {fn} ⊂ Lq
ρ(Γ), {vn} ⊂ V , and N ∈ N

}
.

Such sums are well defined since functions in Lq
ρ(Γ) output into R and V is a real

Banach space. It is clear from the definition of Lq
ρ(Γ)⊗ V that

Lq
ρ(Γ)⊗ V ⊂ Lq

ρ(Γ;V),

i.e. for v =
∑N

n=1 fnvn ∈ Lq
ρ(Γ)⊗ V , it is easy to see that

‖v‖q
Lq

ρ(Γ;V)
≤

N∑
n=1

‖vn‖V‖fn‖Lq
ρ(Γ) <∞.

With the appropriate choice of norm on Lq
ρ(Γ) ⊗ V (c.f. the projective norm, see

Chapter 2.3 in [102]), one can show that the completion of Lq
ρ(Γ)⊗V is isometrically

isomorphic to Lq
ρ(Γ;V). This choice of norm is associated with the natural norm on

the Bochner space via the relationship for f ∈ Lq
ρ(Γ) and v ∈ V

‖f ⊗ v‖qπ :=

∫
Γ

ρ(y)‖f(y)v‖qVdy.

Here, the tensor product, ⊗ is defined in the standard way, i.e. (f ⊗ v) : y 7→ f(y)v.

Note that this product is well defined since V is closed under scalar multiplication.

Hence, it is sufficient to approximate the elements u ∈ Lq
ρ(Γ;V) by elements in the

tensor product space, û ∈ Lq
ρ(Γ)⊗ V .

In the same manner, one can relate C0
ρ(Γ;V) to the spaces C0

ρ(Γ) and V . Define

the tensor product space

C0
ρ(Γ)⊗ V :=

{
N∑

n=1

fnvn : {fn} ⊂ C0
ρ(Γ), {vn} ⊂ V , and N ∈ N

}
.

Again, such sums are well defined since functions in C0
ρ(Γ) real valued and V is a real

Banach space. Furthermore, it is clear that

C0
ρ(Γ)⊗ V ⊂ C0

ρ(Γ;V)
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by similar arguments as used in the Bochner space discussion. Now, with the appro-

priate choice of norm on C0
ρ(Γ)⊗V (c.f. the injective norm, see Chapter 3.2 in [102]),

one can show that the completion of C0
ρ(Γ) ⊗ V is isometrically isomorphic to the

Banach space, C0
ρ(Γ;V). This choice of norm is associated with the natural norm on

the space C0
ρ(Γ;V)via the relationship for f ∈ C0

ρ(Γ) and v ∈ V

‖f ⊗ v‖ε := sup
y∈Γ
‖ρ(y)f(y)v‖V .

The tensor product f ⊗ v is defined as in the Bochner space discussion. Therefore, it

is again sufficient to approximate a function u ∈ C0
ρ(Γ;V) by a function in the tensor

space, û ∈ C0
ρ(Γ)⊗ V .

Since C0
ρ(Γ;V) can be associated with the completion of C0

ρ(Γ)⊗V , I will focus on

approximation in C0
ρ(Γ)⊗V. In order to do this, I would like to associate C0

ρ(Γ) with

the one dimensional function spaces C0
ρk

(Γk) for k = 1, . . . ,M . In this case, I can

build approximation operators for C0
ρ(Γ) based on one dimensional operators acting

on C0
ρk

(Γk). As before, define the tensor product space

C0
ρ1

(Γ1)⊗ · · · ⊗ C0
ρM

(ΓM) :=

{
N∑

n=1

M∏
k=1

fk,n : {fk,n} ⊂ C0
ρk

(Γk) and N ∈ N

}
.

Clearly, this definition implies

C0
ρ1

(Γ1)⊗ · · · ⊗ C0
ρM

(ΓM) ⊂ C0
ρ(Γ)

and using the appropriate norm (again, the injective norm [102]), one can show that

the completion of C0
ρ1

(Γ1)⊗· · ·⊗C0
ρM

(ΓM) is isometrically isomorphic to C0
ρ(Γ). The

norm in this case is defined by the relationship for fk ∈ C0
ρk

(Γk), k = 1, . . . ,M ,

‖f1 ⊗ · · · ⊗ fM‖ε := sup
y∈Γ
|ρ1(y1)f1(y1) · . . . · ρM(yM)fM(yM)|.

Here, the notation f1 ⊗ · · · ⊗ fM is associated with the mapping

(f1 ⊗ · · · ⊗ fM) : y 7→ f1(y1) · . . . · fM(yM).
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With this said, the numerical methods in this thesis will attempt to approximate

functions in C0
ρ(Γ)⊗ V . Furthermore, to approximate the parametric dependence in

C0
ρ(Γ), it will suffice to only work in C0

ρ1
(Γ1)⊗ · · · ⊗ C0

ρM
(ΓM).



Chapter 3

The Stochastic Collocation Method

Stochastic collocation is a non-intrusive method for solving the high dimensional

parametric equation (2.2.3),

ẽ(u(y), z; y) = 0 a.e. in Γ

for fixed z ∈ Z. Stochastic collocation is an interpolation based method and relies

on the regularity of the solution u ∈ U to (2.2.3) with respect to y ∈ Γ in order to

achieve rapid convergence rates. In this chapter I will review the stochastic collocation

discretization technique for the solution of the parametric equations. I will then

extend these techniques to the case of the optimization problem (2.2.9)

min
z∈Z

Ĵ(z) := σ(j(u(y; z), z))

where u(z) = u ∈ U = Lp
ρ(Γ;V) is the solution to (2.2.3). Furthermore, I will formu-

late the stochastic collocation method using the abstract approximation operator,

LQ : C0
ρ(Γ)→ CQ(Γ) ⊂ C0

ρ(Γ).

The set CQ(Γ) is a finite dimensional subspace of C0
ρ(Γ) and the operator, LQ, only

requires a finite number of function evaluations at the points in the set, NQ ⊂ Γ with

|NQ| = Q. Associated with LQ is the quadrature operator, EQ := E◦LQ : C0
ρ(Γ)→ R.

44
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The operators, LQ and EQ, are typically sparse grid or tensor product operators. The

notion of sparse grids is developed in Chapter 4. Concluding this chapter, I will prove

error bounds for stochastic collocation applied to optimization problems governed by

parametric equations.

3.1 Collocation for Parametric Equations

Consider the parametric equation

ẽ(u(y), z; y) = 0 a.e. in Γ (3.1.1)

where u ∈ C0(Γ;V) and z ∈ Z. This equation typically represents a parametrized

PDE or PDE with uncertain coefficients. As in Chapter 2, ẽ(y) : V × Z → W for

y ∈ Γ. The stochastic collocation method builds an approximate solution to (3.1.1)

on a finite set of “collocation points.” The approximation operator, LQ, eluded to

above is a linear operator which depends on a finite number of function evaluations

at points in NQ = {y1, . . . , yQ} ⊂ Γ with |NQ| = Q. Furthermore, I will assume that

LQ has the form

(LQf)(y) =

Q∑
k=1

Pk(y)f(yk) ∀ f ∈ C0
ρ(Γ)

where Pk ∈ CQ(Γ) for k = 1, . . . , Q. In Chapter 4, I will construct specific operators,

LQ, as tensor product or sparse grid approximation operators. In the case that LQ is

a tensor product operator or a sparse grid operator built on nested one dimensional

interpolation knots, LQ is interpolatory, i.e. for any f ∈ C0
ρ(Γ)

(LQf)(y) = f(y) ∀ y ∈ NQ,

or equivalently, Pk(yj) = δkj for k, j = 1, . . . , Q. On the other hand, if LQ is a

sparse grid operator built on non-nested or weakly nested one dimensional interpo-

lation knots, then LQ is not interpolatory. These interpolation results are presented

Chapter 4, Proposition 4.2.5. For the purposes of this thesis, the finite dimensional
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approximation space, CQ(Γ), is assumed to be a polynomial space and in the context

of tensor product and sparse grid operators, CQ(Γ) can be explicitly determined (see

Proposition 4.2.4 in Chapter 4).

With this definition of LQ, the stochastic collocation solution to (3.1.1) is

uQ(y) = (LQ)u(y) =

Q∑
k=1

Pk(y)u(yk).

To compute uQ, one needs to solve (3.1.1) for all y ∈ NQ, where NQ denotes the Q

interpolation knots associated with LQ. Thus, one must solve

ẽ(u(y), z; y) = 0, y ∈ NQ

in order to compute uQ.

3.2 Regularity and Interpolation

The stochastic collocation method depends on the point-wise solution of (3.1.1); there-

fore, sufficient regularity of the solution to (2.2.4), u ∈ U , with respect to the parame-

ters, y ∈ Γ, is essential. First of all, u ∈ U ∩C0
ρ(Γ;V) in order for point evaluations of

u to be well defined. Moreover, one must ensure that the error committed through the

approximation operator, LQ, decays as the number of collocation points increases. In

the context of polynomial approximation and interpolation, the following assumption

on u ∈ U is sufficient (c.f. see Chapter 7, Section 8 in [45]).

Assumption 3.2.1 (Analyticity of the State) For fixed y∗j ∈ Γj with j 6= k,

define

u∗k(yk) := u(y∗1, . . . , y
∗
k−1, yk, y

∗
k+1, . . . , y

∗
M).

The function, u∗k : Γk → V, has an analytic extension on the open elliptic disc,

Drk
⊂ C containing Γk. Specifically, if Γk = [−1, 1], then Drk

(Γk) is the region
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bounded by the ellipse

Erk
:=

{
z = t+ is ∈ C : t =

rk + r−1
k

2
cosφ, s =

rk − r−1
k

2
sinφ, φ ∈ [0, 2π)

}
.

(3.2.1)

Ellipses in the complex plane are natural choices when analyzing interpolation and

quadrature errors because the space L2(Drk
) is a reproducing kernel Hilbert space,

therefore point evaluation is a continuous linear functional. For more information on

reproducing kernel Hilbert spaces and quadrature error analysis see [112]. There are

possibly many conditions on e(u, z; y) for which Assumption 3.2.1 holds. I will now

present one such set of assumptions. The assumptions made here are extensions of

Assumption 1 in [68]. Assumption 1 in [68] are specific for the case where e(u, z; y)

is linear in u and z. Furthermore, similar assumptions were made for the case of

truncated KL expansions in Lemma 3.2 of [9]. The proof of Theorem 3.2.2 below

follows similar arguments as the proof of Lemma 3.2 in [9].

Theorem 3.2.2 Suppose the Implicit Function Theorem holds for (3.1.1) and sup-

pose Γ is bounded. Let z ∈ Z be fixed, u(z) = u ∈ C0
ρ(Γ;V) solve (3.1.1), and define

for fixed y∗j ∈ Γj, j 6= k,

ẽk(u, z; yk) := ẽ(u∗k(yk), z; y
∗
1, . . . , y

∗
k−1, yk, y

∗
k+1, . . . , y

∗
M).

If for each k = 1, . . . ,M , there exists b < +∞ and C = C(z) ≥ supyk∈Γk
‖u∗k(yk; z)‖V

such that

sup
yk∈Γk

‖(∂uẽk(u(z), z; yk))
−1(∂n

yk
ẽk(u(z), z; yk))‖ ≤ Cbn ∀n ∈ N, (3.2.2a)

sup
yk∈Γk

‖(∂uẽk(u(z), z; yk))
−1(∂n

u ẽk(u(z), z; yk))‖ ≤ n! bn ∀n ∈ N, (3.2.2b)

then u = u(z) satisfies Assumptions 3.2.1.
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Proof: By implicitly differentiating the equation ẽ(u, z; y) = 0 with respect to yk

and applying the triangle inequality,∥∥∥∂n
yk
u∗k(yk)

∥∥∥
V
≤
∥∥∥(∂uẽk(u(z), z; yk))

−1(∂n
yk
ẽk(u(z), z; yk))

∥∥∥
+

n∑
k=1

(
n

k

)∥∥∥(∂uẽk(u(z), z; yk))
−1(∂k

u ẽk(u(z), z; yk))
∥∥∥∥∥∥∂n−k

yk
u∗k(yk)

∥∥∥
V

Define Rn := 1
n!

∥∥∂n
yk
u∗k(yk)

∥∥
V , then R0 ≤ C and by the bounds (3.2.2)

Rn ≤ Cbn +
n∑

m=1

bmRn−m ≤ C(2b)n.

Thus, for all γ ∈ C such that |γ − yk| ≤ τ < 1
2b

,

u∗k(γ) =
∞∑

n=0

Rn(γ − yk)
n and ‖u∗k(γ)‖V ≤

C

1− 2bτ
< +∞. (3.2.3)

The relations (3.2.3) hold for all yk ∈ Γk; therefore, u∗k has an analytic extension on

the region

Σk(τ) := {γ ∈ C : |γ − yk| ≤ τ ∀ yk ∈ Γk}

i.e. the union of all balls of radius τ with center yk for all yk ∈ Γk. This implies that

u∗k has an analytic extension on any ellipse contained in the set Σk(τ). 2

Remark 3.2.3 A similar result holds in the case that Γ is unbounded. To arrive at

this result, one requires an auxiliary distribution which decays sufficiently fast. For

more information on unbounded random variables and auxiliary distributions, see [9].

Throughout this chapter, I will use an assumption on the error associated with

the interpolation operator, LQ. I will use a general error bound and track this error

through the optimization problem to the optimal controls.

Assumption 3.2.4 Suppose f : Γ→ R has an analytic extension, then

‖f − LQf‖L∞ρ (Γ) ≤ CQ−ν
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where Q denotes the number of interpolation knots associated with LQ, C = C(f) > 0,

and ν = ν(f) > 0.

A common form of the quantity C = C(f) is C = Ĉ supy∈D |f(y)| where D ⊂ C.

Moreover, Assumption 3.2.4 and the tensor product structure of L∞ρ (Γ;V) (see Sec-

tion 2.5) imply that the error committed by the stochastic collocation method is

‖u− LQu‖L∞ρ (Γ;V) ≤ C(u(z))Q−ν . (3.2.4)

This error bound is proved in Theorems 3.8 and 3.13 of [85] for anisotropic Smolyak

sparse grids built on Clenshaw-Curtis and Gaussian knots respectively. Similar error

bounds are proved in Theorems 4.1 and 6.2 of [9] for tensor product and isotropic

Smolyak sparse grids built on Gaussian knots. The error bounds presented in The-

orems 4.1 and 6.2 of [9] and Theorem 3.13 of [85] are bounds on the L2
ρ(Γ;V) error.

These error bounds are derived by first determining the bound (3.2.4). Since ρ is a

probability distribution, the L2
ρ(Γ;V) error can then be bounded above by (3.2.4). In

Chapter 4, I will prove the error bound (3.2.4) for specific operators, LQ.

3.3 Collocation for Optimization

In this section, I will present two possible stochastic collocation discretizations of the

optimization problem

min
z∈Z

Ĵ(z) := σ(j(u(y; z), z)) (3.3.1)

where u(y; z) = u(y) ∈ V for y ∈ Γ solves (3.1.1). The first approach is to ap-

proximate the solution of (3.1.1) using stochastic collocation and plug the discretized

solution into the objective function. This is a common technique in PDE constrained

optimization and is a “discretize then optimize” approach. The second approach is

to approximate the map,

y ∈ Γ 7→ j(u(y), z),
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using the approximation operator, LQ. This also is a “discretize then optimize”

approach, but is equivalent to an “optimize then discretize” approach.

To discretize (3.3.1) using the first method, one approximates the solution to

(3.1.1) using stochastic collocation and the approximation operator, LQ, i.e.

uQ(y; z) = (LQu(z))(y) =

Q∑
k=1

Pk(y)u(yk; z)

where u(yk) := u(yk; z) ∈ V for k = 1, . . . , Q solves

ẽ(u(yk), z; yk) = 0 for k = 1, . . . , Q. (3.3.2)

Then, plugging the approximate solution, uQ(y; z), into the objective function results

in the following discretization of (3.3.1)

min
z∈Z

ĴQ(z) := σ(j(uQ(y; z), z)) = σ

(
j
( Q∑

k=1

Pk(y)u(yk; z), z
))

. (3.3.3)

The adjoint calculus of Section 2.3 is easily extended to (3.3.3) yielding the derivative

Ĵ ′Q(z) =

Q∑
k=1

ẽz(u(yk; z), z; yk)
∗λk + E

[
∇σ(j(uQ(y; z), z))jz(uQ(y; z), z)

]
where λk = λk(z) ∈ W∗ solves the adjoint equation

ẽu(u(ykz), z; yk)
∗λk + E

[
Pk(y)∇σ(j(uQ(y; z), z))ju(uQ(y; z), z)

]
= 0 (3.3.4)

for all k = 1, . . . , Q. Recalling the infinite dimensional parametrized adjoint equation,

(2.3.2), from Section 2.3,

ẽu(u, z; y)
∗λ+∇σ(j(u, z))ju(u, z) = 0 for a.e. y ∈ Γ, (3.3.5)

it is not clear that (3.3.4) corresponds to a discretization of (3.3.5), especially when

sparse grid operators, LQ, are used. Furthermore, notice that the adjoint equation

(3.3.4) requires the explicit knowledge of the polynomials Pk for k = 1, . . . , Q. For the

class of approximation operators, LQ, considered in this thesis, the polynomials, Pk
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for k = 1, . . . , Q, are challenging to compute (see Chapter 4 for a detailed description

of the operator LQ used in my computations). Therefore, the discretized optimization

problem, (3.3.3), will not be used.

Instead of approximating the solution of (3.1.1) as uQ = LQu and substituting uQ

into the objective function, I will approximate the map

y ∈ Γ 7→ j(u(y), z)

for any u ∈ U using LQ. This again is a “discretize then optimize” approach where

instead of discretizing the constraint, I have discretized the objective function. To

do this, I will replace σ with σQ := σ ◦ LQ. This substitution yields the optimization

problem

min
z∈Z

ĴQ(z) := σQ(j(u(y; z), z)) = σ

(
Q∑

k=1

Pk(y)j(u(yk; z), z)

)
(3.3.6)

where u(yk; z) = u(yk) ∈ V solves

ẽ(u(yk), z; yk) = 0 ∀ k = 1, . . . , Q.

Furthermore, the derivative of ĴQ(z) is

Ĵ ′Q(z) =

Q∑
k=1

ϑk

{
ẽz(u(yk; z), z; yk)

∗λk + jz(u(yk; z), z)
}

where ϑk = E
[
∇σ
(∑Q

`=1 P`(y)j(u(y`; z), z)
)
Pk(y)

]
and λk(z) = λk ∈ W∗ solves

ẽu(u(yk; z), z; yk)
∗λk + ju(u(yk; z), z) = 0 ∀ k = 1, . . . , Q.

Note that if σ ≡ E, then ϑk are the quadrature weights associated with the ten-

sor product quadrature rule, EQ, i.e. ωk := ϑk = E[Pk]. In this case, the notions

of “optimize then discretize” and “discretize then optimize” coincide. Using this

discretization scheme, the discretized state and adjoint equations correspond to the

stochastic collocation discretization of the true state and adjoint equations, (2.2.4)
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and (2.3.2) respectively. Although this discretization scheme is consistent, there is

one apparent pitfall of using this general tensor product discretization. The pitfall

is that the cubature weights associated with EQ may not all be positive. Thus, it is

possible that ĴQ(z) is not convex even if Ĵ(z) is.

3.4 Collocation Error Bounds for Optimization

In discussing the discretization of the optimization problem (3.3.1), it is crucial to

understand error between a given discretization and the true (infinite dimensional)

solution. In this section, I will prove an error bound for the discretized problem,

(3.3.6) corresponding to the test problem presented in Section 2.1. I will first prove

the error bound for the risk measure, σ(Y ) = E[Y ], then I will generalize this result

to other common risk measures.

3.4.1 Minimizing the Expected Value

The expected value risk measure results in the linear quadratic optimal control prob-

lem

min
z∈Z

Ĵ(z) :=
1

2
E
[
‖Qu(z)− q̄‖2H

]
+
α

2
‖z‖2Z (3.4.1)

where u(y) = u(y; z) ∈ V for all y ∈ Γ solves

A(y)u(y) + B(y)z + b(y) = 0 ∀ y ∈ Γ.

Recall here that Z and H are Hilbert spaces, and V and W are Banach spaces.

Furthermore, Q ∈ L(V ,H) is an observation operator, q̄ ∈ H is the desired state,

A(y) ∈ L(V ,W) for all y ∈ Γ is the state operator, B(y) ∈ L(Z,W) for all y ∈ Γ

is the control operator, and b(y) ∈ W for all y ∈ Γ is an inhomogeneity. Moreover,

σ = E : L1
ρ(Γ) → R. Therefore, the state space is U = L2

ρ(Γ;V) and the Lagrange

multiplier space is Y∗ = L2
ρ(Γ;V) = U .
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The error analysis presented here is centered around the particular form of the

derivatives of Ĵ(z) and ĴQ(z). As such, I will now recall the specific forms of these

derivatives. Since σ(Y ) = E[Y ] is Fréchet differentiable, Ĵ(z) is also Fréchet differ-

entiable, and, as seen in Section 2.3, Ĵ(z) has a gradient

∇Ĵ(z) = αz + w(z)

where w = w(z) ∈ Z solves

Rw = E[B∗(y)λ(y; z)]

and λ(y) = λ(y; z) ∈ W∗ for all y ∈ Γ solves the adjoint equation

A∗(y)λ(y) + Q∗(Qu(y; z)− q̄) = 0 ∀ y ∈ Γ. (3.4.2)

Moreover, employing the discretization in (3.3.6) results in the following discretized

gradient

∇ĴQ(z) = αz + wQ(z)

where wQ = wQ(z) ∈ Z solves

RwQ = EQ[B∗λ(z)] =

Q∑
k=1

ωkB
∗
kλk(z),

λk = λk(z) ∈ W∗ solves the adjoint equation

A∗
kλk + Q∗(Quk(z)− q̄) = 0 ∀ k = 1, . . . , Q,

and uk = uk(z) ∈ V solves the state equation

Akuk + Bkz + bk = 0 ∀ k = 1, . . . , Q.

Here, note that since uk(z) = u(yk; z) where u(y; z) solves ẽ(u(y), z; y) = 0, one also

has that λk(z) = λ(yk; z) where λ(y; z) solves the adjoint equation, (2.3.2). Now, since

R is the linear operator representing the Z inner product, R is a positive, invertible

operator, i.e. there exists a bounded inverse R−1 ∈ L(Z∗,Z), and w = w(z) ∈ Z
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can be written as w(z) = R−1E[B∗(y)λ(y; z)]. Similarly, for the discretized problem,

wQ(z) = R−1EQ[B∗λ(z)]. Computing the difference between the true gradient and

the discretized gradient, thus gives

∇Ĵ(z)−∇ĴQ(z) = w(z)− wQ(z) = R−1(E − EQ)[B∗λ(z)]. (3.4.3)

This clearly shows that the error in the gradient vectors is controlled by the error

associated with the quadrature operator, EQ, or equivalently by the error associated

with the interpolation operator, LQ.

Theorem 3.4.1 Suppose z∗ ∈ Z satisfies the first order necessary conditions for

(3.3.1) and suppose z∗Q ∈ Z satisfies the first order necessary conditions for (3.3.6).

Then, the error between z∗ and z∗Q satisfies

α‖z∗ − z∗Q‖Z ≤ E
[
‖R−1B∗λ(z∗Q)− LQR−1B∗λ(z∗Q)‖Z

]
.

Proof: Since Ĵ(z) is uniformly convex, it satisfies the inequality

α‖z∗ − z∗Q‖2Z ≤ 〈∇Ĵ(z∗)−∇Ĵ(z∗Q), z∗ − z∗Q〉Z ,

and the Cauchy-Schwarz inequality implies

α‖z∗ − z∗Q‖Z ≤ ‖∇Ĵ(z∗)−∇Ĵ(z∗Q)‖Z .

Now since z∗ ∈ Z is a first order critical point of Ĵ(z∗) and z∗Q ∈ Z is a first order

critical point of ĴQ(z), i.e. ∇Ĵ(z∗) = 0 and ∇ĴQ(z∗Q) = 0, the above inequality can

be rewritten as

α‖z∗ − z∗Q‖Z ≤ ‖∇ĴQ(z∗Q)−∇Ĵ(z∗Q)‖Z .

Plugging (3.4.3) into the right hand side of the above inequality gives

α‖z∗ − z∗Q‖Z ≤ ‖R−1(E − EQ)[B∗λ(z∗Q)]‖Z ,

and an application of Jensen’s inequality yields the desired result. 2

From this theorem, the following corollary follows directly from Assumption 3.2.4.
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Corollary 3.4.2 Suppose the solution to the adjoint equation, λ ∈ U , satisfy As-

sumption 3.2.1 and LQ satisfies Assumption 3.2.4. Then there exists positive con-

stants C = C(p(z∗Q), α) and ν such that

‖z∗ − z∗Q‖Z ≤ CQ−ν .

Proof: This is a consequence of Theorem 3.4.1 and the error bound in Assump-

tion 3.2.4. Assumption 3.2.4 is applicable due to the tensor product nature of Y∗ = U

(see Section 2.5 for more details). 2

Remark 3.4.3 Recall the linear quadratic control problem described in Section 2.1.

For this model problem, A is defined by

〈A(y)v, w〉V∗,V =

∫
D

ε(y, x)∇v(x) · ∇w(x)dx ∀ v, w ∈ V

and is uniformly bounded above for all y ∈ Γ because ε ∈ L∞(Γ ×D). Furthermore,

A(y) has an almost everywhere bounded inverse because of the uniform ellipticity

assumption (2.1.11). On the other hand, b(y) ≡ 0 and B is independent of y ∈ Γ.

Therefore, if there exists C > 0 and b <∞ such that

∂nε

∂yn
k

(y, x) ≤ Cbn

for almost all (y, x) ∈ Γ × D and for all n ∈ N, then Theorem 3.2.2 ensures that

the solution to the state equation, u, has an analytic extension. Moreover, these

conditions and the analyticity of u guarantee that the solution to the adjoint equation,

λ, also has an analytic extension. Thus, Corollary 3.4.2 applies to this test problem.

3.4.2 Minimizing the Mean Plus Semi-Deviation

The expected value problem (3.4.1) is typically not a sufficient reformulation of (2.2.9).

In many engineering applications, a design or control holding “on average” is unac-

ceptable. It is often necessary to account for tail probabilities and extreme events.
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Such “robust” optimization problems are formulated using risk measures. I will now

generalize the results of Theorem 3.4.1 and Corollary 3.4.2 to the mean plus semi-

deviation coherent risk measure. Recall that, in general, the mean plus semi-deviation

of order q is defined as

σq(Y ) := E[Y ] + cE
[
[Y − E[Y ]]q+

]1/q

for c ∈ [0, 1] and σq(Y ) can be written in terms of the auxiliary function

σ̂q : R× Lq
ρ(Γ)→ R

as σq(Y ) = σ̂Q(E[Y ], Y ) where

σ̂q(t, Y ) := t+ cE
[
[Y − t]q+

]1/q

.

This characterization will allow for easy derivative computation. Since σq(Y ) satisfies

Assumptions 2.2.11 (i.e. σq(Y ) is coherent) and the deterministic objective function

is separable, the reformulated objective function corresponding to mean plus semi-

deviation can be written as

Ĵ(z) =
1

2
σ1

(
‖Qu(z)− q̄‖2H

)
+
α

2
‖z‖2Z .

This objective function, Ĵ(z), is Hadamard differentiable and admits a gradient since

Z is a Hilbert space. This Hadamard differentiability follows from the discussion on

page 16 of [100]. Define the set

Y(z) :=
{
y ∈ Γ : ‖Qu(y; z)− q̄‖2H > E

[
‖Qu(z)− q̄‖2H

]}
,

and let χY(z) denote the characteristic function of the set Y(z), then the gradient in

Z corresponding to the Hadamard derivative is given by

∇Ĵ(z) = αz + R−1

{
E[B∗λ]− cE[χY(z)]E[B∗λ] + cE[χY(z)B

∗λ]

}

= αz + R−1

{
E[B∗λ] + cCov

(
χY(z),B

∗λ
)}

(3.4.4)
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where λ = λ(z) solves the adjoint equation (3.4.2). Here, Cov(Y1, Y2) denotes the

covariance between the random variables Y1 and Y2. The covariance is defined as

Cov(Y1, Y2) = E[(Y1 − E[Y1])(Y2 − E[Y2])] = E[Y1Y2]− E[Y1]E[Y2].

To discretize this objective function, Ĵ(z), replace ‖Qu(z) − q̄‖2H with its inter-

polant, i.e.

ĴQ(z) =
1

2
σ1

(
LQ‖Qu(z)− q̄‖2H

)
+
α

2
‖z‖2Z

where LQ is an appropriate interpolation operator. The linearity of LQ and the

gradient (3.4.4) implies the following form of the gradient of ĴQ(z)

∇ĴQ(z) = αz + R−1

{
E[LQB∗λ] + cCov

(
χYQ(z),LQB∗λ

)}
(3.4.5)

where

YQ(z) :=
{
y ∈ Γ : LQ‖Qu(y; z)− q̄‖2H > E

[
LQ‖Qu(z)− q̄‖2H

]}
.

As was done in the proof of Theorem 3.4.1, I will need to quantify the error be-

tween ∇Ĵ(z) and ∇ĴQ(z) at the same control value. To do this, first notice that the

covariance operator satisfies

Cov(Y1, Y2)− Cov(X1, X2) = Cov(Y1, Y2 −X2) + Cov(Y1 −X1, X2)

for any random variables Y1, Y2, X1, X2 ∈ L2
ρ(Γ). Applying Hölder’s inequality to this

equality gives

|Cov(Y1, Y2)− Cov(X1, X2)| ≤‖Y1 − E[Y1]‖L∞ρ (Γ)‖(Y2 −X2)− E[Y2 −X2]‖L1
ρ(Γ)

+ ‖X2 − E[X2]‖L∞ρ (Γ)‖(Y1 −X1)− E[Y1 −X1]‖L1
ρ(Γ).

(3.4.6)

Now notice that an application of the triangle inequality to ‖Y −E[Y ]‖ for any Lq
ρ(Γ)

norm, ‖ · ‖, gives

‖Y − E[Y ]‖ ≤ ‖Y ‖+ ‖E[Y ]‖ = ‖Y ‖+ |E[Y ]| ≤ 2‖Y ‖.
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Therefore, multiple applications of the triangle inequality to the right hand side of

(3.4.6) gives

|Cov(Y1, Y2)−Cov(X1, X2)| ≤ 4
{
‖Y1‖L∞ρ (Γ)‖Y2−X2‖L1

ρ(Γ)+‖X2‖L∞ρ (Γ)‖Y1−X1‖L1
ρ(Γ)

}
.

Plugging in Y1 = χY(x), Y2 = B∗p, X1 = χYQ(x), and X2 = LQB∗p gives the following

error representation for the gradients

‖∇Ĵ(z)−∇ĴQ(z)‖Z ≤E
[
‖R−1B∗λ(z)− LQR−1B∗λ(z)‖Z

]
︸ ︷︷ ︸

I

+ 4
∥∥∥ sup

y∈Γ
|R−1B(y)∗λ(y; z)−R−1LQB(y)∗λ(y; z)|

∥∥∥
Z︸ ︷︷ ︸

II

+ 4
∥∥∥ sup

y∈Γ
|R−1LQB(y)∗λ(y; z)|

∥∥∥
Z
E[χY(z)∆YQ(z)]︸ ︷︷ ︸

III

where Y(z)∆YQ(z) = (Y(z)\YQ(z))∪(YQ(z)\Y(z)) denotes the symmetric difference

of the sets Y(z) and YQ(z). Notice that expressions I and II can be handled using

existing error bounds for the interpolation operator LQ (see Theorem 3.4.1), therefore

it remains to bound III. To do this, one must bound the size (i.e. probability) of the

symmetric difference Y(z)∆YQ(z).

In general, determining meaningful bounds on the size of Y(z)∆YQ(z) is not

possible. To circumvent this issue, it is convenient to replace [ · ]+ with a C∞ approx-

imation. A common choice of smooth approximation is

℘(x, γ) = x+
1

γ
log(1 + e−γx)

(c.f. see [38] for more details). This function has many nice properties; most impor-

tantly, ℘(x, γ) tends to [x]+ as γ grows to positive infinity. Other significant properties

are

℘(x, γ) > [x]+, |℘′(x, γ)| < 1, and |℘′′(x, γ)| ≤ γ

4
∀ x ∈ R.

Furthermore, ℘(x, γ) is strictly convex and strictly increasing (see Lemma 1.1 in [38]).

The fact that ℘′′(x, γ) is bounded for all x ∈ R implies that, for fixed γ ∈ (0,∞),
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℘′(x, γ) is Lipschitz continuous. Now, define the C∞ approximation of σq(Y ) as

σγ
q (Y ) := E[Y ] + cE

[
℘(Y − E[Y ], γ)q

]1/q

for fixed γ. The above analysis can be replicated by replacing σq with σγ
q , which gives

the following gradients

∇Ĵ(z) =αz + R−1E[B∗p]

+ cR−1Cov

(
℘′
(
‖Qu(y; z)− q̄‖2H − E

[
‖Qu(z)− q̄‖2H

]
, γ
)
,B∗λ

)
(3.4.7)

and

∇ĴQ(z) =αz + R−1E[LQB∗p]

+ cR−1Cov

(
℘′
(
LQ‖Qu(y; z)− q̄‖2H − E

[
LQ‖Qu(z)− q̄‖2H

]
, γ
)
,LQB∗λ

)
.

(3.4.8)

Now, computing the difference between these gradients and employing the properties

of ℘(x, γ) described above gives the bound

‖∇Ĵ(z)−∇ĴQ(z)‖Z ≤ I + 4× II + 2γ
∥∥∥ sup

y∈Γ

∣∣R−1LQB(y)∗λ(y; z)
∣∣∥∥∥
Z

× E
[∣∣‖Qu(y; z)− q̄‖2H − LQ‖Qu(z)− q̄‖2H

∣∣]. (3.4.9)

This bound demonstrates the error in the gradients is controlled by the interpola-

tion error associated with LQ. Hence, for this C∞ approximation to the mean plus

semi-deviation problem, one gets a similar error bound on the gradients as with the

expected value problem.

Theorem 3.4.4 Suppose z∗ ∈ Z is a first order critical point of

Ĵ(z) =
1

2
σγ

1

(
‖Qu(y; z)− q̄‖2H

)
+
α

2
‖z‖2Z

and z∗Q ∈ Z is a first order critical point of

ĴQ(z) =
1

2
σγ

1

(
LQ‖Qu(y; z)− q̄‖2H

)
+
α

2
‖z‖2Z .
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Furthermore, suppose the assumptions of Corollary 3.4.2 hold. Then there exists

positive constants C = C(u(z∗Q), p(z∗Q), γ, α) and ν such that

‖z∗ − z∗Q‖Z ≤ CQ−ν .

Proof: Ĵ(z) is uniformly convex since σγ
1 (Y ) is convex and increasing. Therefore,

the error in the controls can be bounded by the errors in the gradients, ∇Ĵ(z∗Q) and

∇ĴQ(z∗Q) as done in the proof of Theorem 3.4.1. Using the bound (3.4.9) and the

Assumption 3.2.4 gives the desired result. 2

3.4.3 Minimizing the Conditional Value-At-Risk

It is often necessary to account for tail probabilities and extreme events. One method

of formulating these “robust” optimization problems is to employ the conditional

value-at-risk (CVaR). CVaR quantifies the risk on the tails of the distribution of the

objective function and is defined as

σCVaR(Y ) = min
t∈R

t+ cE
[
[Y − t]+

]
and much like the mean plus semi-deviation, CVaR can be written using the auxil-

iary function σ̂q(t, Y ) as σCVaR(Y ) = mint∈R σ̂1(t, Y ). It can further be shown that

minimizing the CVaR objective function over Z is equivalent to minimizing σ̂1(t, Y )

over the augmented space (t, z) ∈ R × Z [117]. For this analysis, I will consider the

optimization problem

min
t∈R, z∈Z

Ĵ(t, z) = σ̂1

(
t,

1

2
‖Qu(y; z)− q̄‖2H

)
+
α

2
‖z‖2Z

where u(y; z) = u ∈ U solves (2.2.4). The analysis performed for the mean plus

semi-deviation risk measure essential holds for the CVaR risk measure and therefore

it will be critical to replace [ · ]+ in σCVaR with ℘(·, γ). The C∞ approximation of the

CVaR objective function is

Ĵ(t, z) = σ̂γ
1

(
t,

1

2
‖Qu(y; z)− q̄‖2H

)
+
α

2
‖z‖2Z (3.4.10)
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where

σ̂γ
1 (Y, t) = t+ cE

[
℘(Y − t, γ)

]
.

The gradient of Ĵ(t, z) is thus computed using the partial derivatives of Ĵ(t, z) with

respect to t ∈ R and z ∈ Z:

∇tĴ(t, z) =1− cE
[
℘′
(1
2
‖Qu(y; z)− q̄‖2H − t, γ

)]
∇zĴ(t, z) =αz + cR−1E

[
℘′
(1
2
‖Qu(y; z)− q̄‖2H − t, γ

)
B∗λ

]
where λ = λ(z) solves the adjoint equation (3.4.2).

Employing the stochastic collocation discretization scheme, one can write the

collocation and C∞ approximate CVaR objective function as

ĴQ(t, z) = σ̂γ
1

(
t,

1

2
LQ‖Qu(y; z)− q̄‖2H

)
+
α

2
‖z‖2Z (3.4.11)

which admits the gradient

∇tĴQ(t, z) =1− cE
[
℘′
(1
2
LQ‖Qu(y; z)− q̄‖2H − t, γ

)]
∇zĴQ(t, z) =αz + cR−1E

[
℘′
(1
2
LQ‖Qu(y; z)− q̄‖2H − t, γ

)
LQB∗λ

]
.

Invoking the Lipschitz continuity of ℘′(·, γ) and Jensen’s inequality, the collocation

error associated with t component of the gradient is bounded by

|∇tĴ(t, z)−∇tĴQ(t, z)| ≤cE
[∣∣℘′(1

2
LQ‖Qu(y; z)− q̄‖2H − t, γ

)
− ℘′

(1
2
‖Qu(y; z)− q̄‖2H − t, γ

)∣∣]
≤cγ

8
E
[∣∣LQ‖Qu(y; z)− q̄‖2H − ‖Qu(y; z)− q̄‖2H

∣∣].
Therefore, the collocation error in the t component of the gradient of Ĵ(t, z) is con-

trolled by interpolation error. Similarly, the collocation error associated with the z
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component of the gradient is bounded above in the following manner

‖∇zĴ(t, z)−∇zĴQ(t, z)‖Z =c
∥∥∥R−1E

[
℘′
(1
2
‖Qu(y; z)− q̄‖2H − t, γ

)
B∗λ

− ℘′
(1
2
LQ‖Qu(y; z)− q̄‖2H − t, γ

)
LQB∗λ

]∥∥∥
Z

≤cE
[∣∣℘′(1

2
‖Qu(y; z)− q̄‖2H − t, γ

)∣∣‖R−1(B∗λ− LQB∗λ)‖Z

+
∣∣℘′(1

2
‖Qu(y; z)− q̄‖2H − t, γ

)
− ℘′

(1
2
LQ‖Qu(y; z)− q̄‖2H − t, γ

)∣∣‖R−1LQB∗λ‖Z
]

≤cE
[∣∣‖R−1(B∗λ− LQB∗λ)‖Z

]
+
cγ supy∈Γ ‖R−1LQB∗(y)λ(y)‖Z

8
(3.4.12)

× E
[∣∣‖Qu(y; z)− q̄‖2H − LQ‖Qu(y; z)− q̄‖2H

∣∣].
(3.4.13)

Clearly, the error associated with the z component of the gradient can also be con-

trolled by interpolation error. This brings about the following error bound.

Theorem 3.4.5 Suppose (t∗, z∗) ∈ R × Z is a first order critical point of (3.4.10)

and (t∗Q, z
∗
Q) ∈ R× Z is a first order critical point of (3.4.11). Furthermore, suppose

the assumptions of Corollary 3.4.2 hold. Then there exists positive constants C =

C(u(z∗Q), λ(z∗Q), γ, α) and ν such that

‖z∗ − z∗Q‖Z ≤ C(Q−ν + |t∗ − t∗Q|).

Proof: Ĵ(t, z) is uniformly convex with respect to z ∈ Z and strictly convex with

respect to t ∈ R since σ̂γ
1 (t, Y ) is convex and increasing in both arguments. Therefore,

the error in the controls can be bounded by the errors in the gradients, ∇Ĵ(t∗Q, z
∗
Q)

and ∇ĴQ(t∗Q, z
∗
Q) as done in the proof of Theorem 3.4.1, i.e.

α‖z∗ − z∗Q‖Z ≤‖∇zĴ(t∗, z∗)−∇zĴ(t∗, z∗Q)‖Z

=‖∇zĴQ(t∗Q, z
∗
Q)−∇zĴ(t∗, z∗Q)‖Z

≤‖∇zĴQ(t∗Q, z
∗
Q)−∇zĴ(t∗Q, z

∗
Q)‖Z + ‖∇zĴ(t∗Q, z

∗
Q)−∇zĴ(t∗, z∗Q)‖Z .
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Applying the bound (3.4.13) and Assumption 3.2.4 to the first term on the right hand

side and invoking the Lipschitz continuity of ℘′ to handle the second term one gets

α‖z∗ − z∗Q‖Z ≤ Ĉ(u(z∗Q), λ(z∗Q), γ)Q−ν +
cγ

4
E
[
‖R−1B∗λ(z∗Q)‖Z

]
|t∗ − t∗Q|.

This gives the desired result. 2

Remark 3.4.6 To obtain a meaningful error bound, one also needs to quantify the

error, |t∗−t∗Q|, in terms of Q. Currently, this is future work. Note that the techniques

used to bound the error ‖z∗−z∗Q‖Z cannot be applied to the error |t∗−t∗Q| since Ĵ(t, z)

is only strictly convex with respect to t ∈ R.



Chapter 4

High Dimensional Interpolation

In this chapter I will review and extend a general class of high dimensional interpola-

tion and quadrature operators. These operators are essential for efficient application

of the stochastic collocation discretization technique for the solution of the parametric

equation ẽ(u(y), z; y) = 0 for y ∈ Γ when Γ is a high dimensional parameter space.

I will first review a few standard results concerning one dimensional Lagrangian in-

terpolation. Then, I will extend the one dimensional interpolation operators to a

general class of high dimensional interpolation operators built on the concepts of

Smolyak’s Algorithm [110] and weighted tensor approximation [120, 52, 15]. Finally,

I will present an extension of the dimension adaptive ideas of Gerstner and Griebel

[52] for the approximation of high dimensional integrals.

4.1 One Dimensional Interpolation

The one dimensional interpolation operators considered in this section will be denoted

Lk,j : C0
ρk

(Γk) → Pmk,j−1(Γk) for k = 1, . . . ,M . Here, Lk,j, j = 1, 2, . . . , denotes a

sequence of one dimensional interpolation operators exact for polynomials of degree

mk,j − 1 or less and {mk,j}∞j=1 is a monotonically increasing sequence of positive

integers with mk,1 = 1. Moreover, Nk,j = {yk,j,q}
mk,j

q=1 ⊂ Γk will denote the finite set of

64
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distinct interpolation knots corresponding to the operator Lk,j. For any f ∈ C0
ρk

(Γk),

the one dimensional interpolation operators considered here are defined as

(Lk,jf)(y) =

mk,j∑
q=1

`k,j,q(y)f(yk,j,q).

The functions `k,j,q ∈ Pmk,j−1(Γk) are taken to be the Lagrange interpolating polyno-

mials built on the one dimensional knots, Nk,j, i.e.

`k,j,q(yk) =

mk,j∏
s=1
s 6=q

yk − yk,j,s

yk,j,q − yk,j,s

.

Other one dimensional interpolating polynomials such as piecewise polynomials or

splines are also applicable to the tensor product constructions which follow, but I will

restrict my attention to Lagrange interpolation.

The norm of the Lagrange interpolation operator, Lk,j, is known as the Lebesgue

constant, i.e.

Λp
k,j := ‖Lk,j‖k,p for 1 ≤ p ≤ ∞,

where ‖ · ‖k,p denotes the operator norm

‖Lk,j‖k,p := sup
‖f‖

L
p
ρk

(Γk)
≤1

‖Lk,jf‖Lp
ρk

(Γk).

For the remainder of this thesis, I will restrict my attention to the case where p =∞.

The associated Lebesgue constant satisfies

Λk,j := Λ∞k,j = max
y∈Γk

mk,j∑
q=1

|`k,j,q(y)|.

Since Λk,j is dependent on the choice of interpolation knots, it is valid to ask “what

is the optimal choice of knots, N ∗
k,j,” and “how does the Lebesgue constant for these

optimal knots, Λ∗k,j, behave.” It can be shown that the Lebesgue constant, Λ∗k,j,

satisfies the lower bound

Λk,j ≥ Λ∗k,j >
2

π
log(mk,j − 1) +

2

π

(
γ + log

4

π

)
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where γ ≈ 0.5772 is Euler’s constant (c.f. see the remark on page 701 of [30]). A

consequence of this result is that Λk,j grows unboundedly as j increases toward infinity.

A simple consequence of these definitions is any interpolation operator, Lk,j gives

the following interpolation error for all f ∈ C0
ρk

(Γk)

‖f − Lk,jf‖C0
ρk

(Γk) ≤ ‖f − p+ Lk,j(p− f)‖C0
ρk

(Γk)

≤ ‖f − p‖C0
ρk

(Γk) + ‖Lk,j(p− f)‖C0
ρk

(Γk)

for any p ∈ Pmk,j−1(Γk). Therefore,

‖f − Lk,jf‖C0
ρk

(Γk) ≤ (1 + Λk,j) inf
p∈Pmk,j−1(Γk)

‖f − p‖C0
ρk

(Γk). (4.1.1)

Thus, to fully characterize the interpolation error, one must be able to bound the

error between f ∈ C0
ρk

(Γk) and its best approximation in Pmk,j−1(Γk). On the other

hand, the error (4.1.1) is highly dependent on the size of the Lebesgue constant, Λk,j,

which depends on the choice of interpolation knots, Nk,j. In addition to (4.1.1), the

error corresponding to the interpolation operator, Lk,j, satisfies

‖Ik − Lk,j‖k,∞ = 1 + Λk,j (4.1.2)

where Ik denotes the identity operator on C0
ρk

(Γk) (c.f. see Equation 8 and the proof

that follows in [97]). This also gives the upper and lower bounds on the difference

between two consecutive interpolation rules, ∆k,j := Lk,j − Lk,j−1,

|Λk,j − Λk,j−1| ≤ ‖∆k,j‖k,∞ ≤ Λk,j + Λk,j−1.

Another property of these knots, Nk,j, that will be essential for the high dimen-

sional generalizations of these one dimensional interpolation operators is whether or

not these knots are nested.

Definition 4.1.1 The one dimensional interpolation abscissa are nested if

Nk,j ⊂ Nk,j+1 ∀j.
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They are weakly nested if

Nk,j ∩Nk,j+1 6= ∅, but Nk,j 6⊂ Nk,j+1 ∀j.

See table 4.1 for common choices of one dimensional abscissa. Nested knots and to

Abscissa Domain Weight mi Nested?

Clenshaw-Curtis [−1, 1] ρ(y) = 1 2i−1 + 1 Yes

Gauss-Patterson [−1, 1] ρ(y) = 1 2i+1 − 1 Yes

Gauss-Legendre [−1, 1] ρ(y) = 1 2i+1 − 1 Weakly

Gauss-Hermite (−∞,+∞) ρ(y) = e−y2
2i+1 − 1 Weakly

Genz-Keister (−∞,+∞) ρ(y) = e−y2 {1, 3, 9, 19, 35, ...} Yes

Gauss-Legendre [0,+∞) ρ(y) = e−y 2i+1 − 1 No

Table 4.1: Common one dimensional abscissa with exponential growth rules, mi.

some extent, weakly nested knots will give severe reductions in the number of high

dimensional interpolation knots required to achieve a desired accuracy.

4.1.1 Interpolation and Analytic Functions

The Stone-Weierstrass Theorem implies that the space of polynomials is dense in

C0
ρk

(Γk) (c.f. see Theorem 4.45 in [49]); that is, any function, f ∈ C0
ρk

(Γk) can be

approximated arbitrarily closely by a polynomial. This fact does not ensure that a

given sequence of interpolation operators converges for all members of C0
ρk

(Γk). In

fact, for each Lk,j there exists a function f ∈ C0
ρk

(Γk) for which (Lk,jf)(y) diverges

almost everywhere (e.g. Runge’s function for equi-distant interpolation knots). This

result is presented as Theorem 5.3 in [45]. This is no longer the case when the domain

of the operator Lk,j is switched from f ∈ C0
ρk

(Γk) to the analytic functions defined

on an elliptic disc in the complex plane. This function space will be denoted by

A(Γk, rk) := {f : C→ R : f is analytic on Drk
(Γk)} .
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The set, Drk
(Γk), is an open elliptic disc containing Γk with semi-axis sum rk > 1 (e.g.

see (3.2.1) for an example of Drk
(Γk) with Γk = [−1, 1]). The analyticity assumption,

Assumption 3.2.1, ensures that for fixed directions, Γk, the solution of the PDE with

uncertain coefficients (2.2.4) is a member ofA(Γk, rk). One result of particular interest

to this work is Theorem 8.1 in Chapter 7.8 of [45]. This theorem concerns the best

approximation of an analytic function, f ∈ A(Γk, rk) with algebraic polynomials. A

consequence of the proof of this theorem is the following lemma.

Lemma 4.1.2 Suppose f ∈ C0
ρk

(Γk) has an analytic extension on the elliptic disc,

Drk
(Γk). Then, the best approximation of f by the algebraic polynomials of degree d,

Pd(Γk) satisfies

min
p∈Pd(Γk)

‖f − p‖C0
ρk

(Γk) ≤
2

rk − 1
r−d
k sup

y∈Drk

|f(y)|.

Combining this result with (4.1.1), it is easy to see that for any f ∈ C0
ρk

(Γk) which has

an analytic extension on the elliptic disc, Drk
(Γk), the interpolation error associated

with the operator, Lk,j, satisfies

‖f − Lk,jf‖C0
ρk

(Γk) ≤ (1 + Λk,j)
2

rk − 1
r
−(mk,j−1)

k sup
y∈Drk

|f(y)|. (4.1.3)

The convergence rate described in (4.1.3) depends on the sum of the semi-axis lengths,

rk > 1, of the ellipse, Drk
(Γk) which is determined by the analyticity of the function

f ∈ C0
ρk

(Γk).

4.1.2 Clenshaw-Curtis Knots

One popular choice of interpolation knots are the so-called Clenshaw-Curtis knots.

These knots are the extrema of Chebyshev polynomials, i.e.

yk,j,q = − cos
(π(q − 1)

mk,j − 1

)
for q = 1, . . . ,mk,i.

Furthermore, these knots can be made nested by choosing mk,i to satisfy

mk,1 = 1 and mk,j = 2j−1 + 1 for j > 1,
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Figure 4.1: Clenshaw-Curtis quadrature nodes for levels j = 1, . . . , 6.

see Figure 4.1. These knots are quite popular because they admit a relatively small

upper bound for the Lebesgue constant. This upper bound is

Λk,j ≤
2

π
log(mk,j − 1) + 1− αj <

2

π
log(mk,j − 1) + 1

for mk,j ≥ 2 and some αj ∈ (0, 1/mk,j) (see e.g. [30]). In addition, plugging the

particular form of mk,j into the bound for the Lebesgue constant gives

Λk,j ≤
2

π
(j − 1) log(2) + 1 =

2

π
log(2)j + (1− 2

π
log(2)).

Combining this result with (4.1.3) the interpolation error for functions f ∈ C0
ρk

(Γk)

with analytic extension on Drk
(Γk) satisfies

‖f − Lk,jf‖C0
ρk

(Γk) ≤ C(rk, f)jr−2j

k (4.1.4)

where C = C(rk, f) is a positive constant depending on rk and f , but not on the

polynomial degree, j. This bound on the one dimensional interpolation error also

gives a bound on the difference of two consecutive operators, ∆k,j = Lk,j − Lk,j−1,

‖∆k,jf‖C0
ρk

(Γk) ≤ ‖Lk,jf − f‖C0
ρk

(Γk) + ‖f −Lk,j−1f‖C0
ρk

(Γk) ≤ D(rk, f)jr−2j−1

k (4.1.5)



70

where D = D(rk, f) is a positive constant depending on rk and f , but not on the poly-

nomial degree, j. These difference operators will be paramount in the construction

of general high dimensional interpolation operators.

4.2 Tensor Product Polynomial Approximation

The high dimensional interpolation operators considered in this thesis are natural

extensions of the one dimensional operators discussed in Section 4.1. These high di-

mensional operators are built on the differences between two consecutive interpolation

operators, i.e.

∆k,j = Lk,j − Lk,j−1 where Lk,0 = 0

for j ≥ 1 and k = 1, . . . ,M . For all functions, f ∈ C0
ρk

(Γk), with an analytic extension

on Drk
(Γk), the difference, ∆k,jf , converges to zero. Furthermore, for k = 1, . . . ,M ,

these difference operators satisfy the telescoping sum properties:

∆k,1 = Lk,1 and Lk,n =
n∑

j=1

∆k,j.

The tensor product interpolation operators considered here are built on high dimen-

sional tensor products of these one dimensional difference operators. These tensor

product difference operators are defined as

∆j = ∆1,j1 ⊗ · · · ⊗∆M,jM

for multi-indices j = (j1, . . . , jM) ∈ NM . The M dimensional generalization of the

one dimensional operator Lk,j is then given by

LI :=
∑
i∈I

∆i (4.2.1)

for some index set, I ⊂ NM . The one goal in selecting an appropriate index set,

I, is to maintain the telescoping sum property from the one dimensional case. This
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property will guarantee certain polynomial exactness and interpolation results con-

cerning LI by ensuring that similar properties of the one dimensional operators hold.

I thoroughly discuss these properties in Subsection 4.2.3. These results will require

some notion of admissibility for index sets, I ⊂ NM . For clarity, I will adopt the

following notation and partial ordering on NM , for i, j ∈ NM ,

j ≤ i ⇐⇒ jk ≤ ik ∀k = 1, . . . ,M.

Definition 4.2.1 The set I ⊂ NM is admissible if i ∈ I and j ≤ i, then j ∈ I.

Remark 4.2.2 The classic Smolyak and full tensor product operators are special

cases of (4.2.1). The Smolyak rule of level ` > 0 corresponds to the index set

ISM(`,M) :=

{
i ∈ NM :

M∑
k=1

(ik − 1) ≤ `

}
,

while the full tensor product algorithm of level ` corresponds to the index set

ITP(`,M) :=

{
i ∈ NM : max

k=1,...,M
(ik − 1) ≤ `

}
.

See figure 4.2 for a depiction of ISM(7, 2) and ITP(7, 2). On the other hand, given

any mapping g : NM → N, strictly increasing in each argument, the anisotropic tensor

product operator of order ` is defined as

I(`,M, g) :=
{
i ∈ NM : g(i) ≤ `

}
.

Notice that I subsumes both the classic Smolyak index set, ISM(`,M), and the full

tensor product index set, ITP(`,M); that is, the classic Smolyak index set and full

tensor product index are defined with

g(i) =
M∑

k=1

(ik − 1) and g(i) = max
k=1,...,M

(ik − 1),

respectively.
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Figure 4.2: Tensor product (blue and grey) and Smolyak sparse grid (blue) index sets

for level ` = 7 and dimension M = 2.

The polynomial properties of the operators, LI are often disguised by the complex-

ity in the definition (4.2.1). Hence, it is often useful to rewrite (4.2.1) as a linear com-

bination of the tensor product of one dimensional operators, Li := L1,i1⊗· · ·⊗LM,iM .

This reformulation is called the combination technique [52, 50]. Let

χI(i) =

 1 if i ∈ I

0 otherwise

denote the characteristic function of the index set I. By expanding theM dimensional

difference operators ∆i in terms of Lk,j and combining like terms, one can rewrite

(4.2.1) as

LI =
∑
i∈I

( ∑
z∈{0,1}M

(−1)|z|χI(i + z)

)
Li. (4.2.2)

This form of LI is convenient because it demonstrates the dependence of LI on the one

dimensional interpolation operators. Furthermore, (4.2.2) demonstrates the savings

achieved by (4.2.1) for a given choice of I. Notice that if i ∈ I such that i + z ∈ I
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for all z ∈ {0, 1}M , then

c(i) :=
∑

z∈{0,1}M

(−1)|z|χI(i + z) =
M∑

k=0

(−1)k

 M

k

 = 0.

Therefore, for such i ∈ I, one need not compute Li.

It is worthwhile noting that much of the work associated with the operator LI
is directly related to the index set, I. This index set should be chosen so that LI
is sufficiently accurate, but is not overly expensive to compute. To do this, many

researchers have considered using a priori information to determine an “optimal”

index set I. Optimality, in this sense, refers to minimizing the error
∑

i 6∈I ‖∆i‖ subject

to a constraint that the cost associated with I is less than some positive constant N .

This constrained minimization problem is equivalent to a classic knapsack problem

[13]. I can also be chosen in an adaptive fashion. In Subsection 4.2.2, I will discuss

the adaptive selection of index sets, I, in the context of sparse grid quadrature.

4.2.1 Tensor Product Quadrature

The tensor product operator, LI , can be extended to a high dimensional quadrature.

Let E = E1 ⊗ · · · ⊗ EM denote the M dimensional integral

E[f ] =

∫
Γ

ρ(y)f(y)dy =
M∏

k=1

∫
Γk

ρk(yk)fk(yk)dyk ∀ f ∈ C0
ρ1

(Γ1)⊗ · · · ⊗ C0
ρM

(ΓM).

Associated with the tensor product operator, LI , is the M dimensional cubature

operator defined by the composition EI := E ◦ LI . The operator, EI , is the sparse

grid cubature formula associated with the index set, I. The combination technique

formulation, (4.2.2), of EI is

EI = E ◦ LI =
∑
i∈I

( ∑
z∈{0,1}M

(−1)|z|χI(i + z)

)
Ei.

Here, Ei := E ◦ Li is merely the tensor product cubature rule associated with the

index, i. The cubature formula, Ei, requires function evaluations at the nodes

Ni := N1,i1 × · · · × NM,iM .
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Figure 4.3: Admissible index sets (left) and their corresponding Clenshaw-Curtis

quadrature nodes (right). The first is a tensor product rule, the second row is an

isotropic Smolyak rule, and the third row is an arbitrary anisotropic rule. The blue

and grey squares indicate members of the index sets. The blue squares correspond to

indices for which c(i) =
∑

z∈{0,1}M (−1)|z|χI(i + z) 6= 0.

Recall that the interpolation operator, Li, is the tensor product of one dimensional

Lagrange interpolation operators, Lik , built on the nodes, Nk,ik . The weights as-

sociated with Ei are the Kronecker products of the corresponding one dimensional

weights. In the case that Lk,j are one dimensional Lagrange interpolants built on the

extrema of orthogonal polynomials, the cubature rules Ei are merely tensor product
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Gaussian cubature rules. On the other hand, if Lk,j are one dimensional piecewise

linear polynomials interpolants built on equidistant points, then Ei denotes a ten-

sor product trapezoidal rule. Figure 4.3 depicts examples of the quadrature points

associated with EI for different choices of index sets, I.

4.2.2 Dimension Adaptive Index Set Selection

Gerstner and Griebel [53], and Hegland [58] have presented an algorithm for the

adaptive selection of admissible index sets, I, when approximating the integral of

a scalar valued function. This work can be extended to the general tensor product

integration problem ∫
Γ

ρ(y)f(y)dy for f ∈ C0
ρ(Γ;V)

where V is some Banach space. In the context of optimization problems governed by

PDEs with random inputs, such integration problems arise in gradient and Hessian-

times-a-vector computations. The extended adaptive tensor product algorithm re-

quires a reduction function, γ : V → [0,∞). One possible choice of γ is a norm

defined on V . See Algorithm (4.2.3) for details. This algorithm generates admissible

index sets and the corresponding general tensor product cubature formula. Conver-

gence of this algorithm is dependent on the quality of the error estimators, γ(∆jv).

Algorithm 4.2.3 - Dimension Adaptive Sparse Grids:

Set i = (1, . . . , 1), O = ∅, A = {i}, r = ∆iv, η = ηi = γ(r)

while η > TOL do

Select i ∈ A corresponding to the largest ηi

Set A ← A \ {i} and O ← O ∪ {i}

Update the error indicator η = η − ηi
for k = 1, . . . , d do

Set j = i + ek
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if O ∪ {j} is admissible then

Set A ← A∪ {j}

Set r̃ = ∆jv

Set ηj = γ(r̃)

Update the integral approximation r = r + r̃

Update the error indicator η = η + ηj

end if

end for

end while

The convergence of Algorithm 4.2.3 is dependent on the regularity of the inte-

grand, f ∈ C0
ρ(Γ;V) and is heuristic in nature. In practice, Algorithm 4.2.3 seems to

work quite well and typically results in a large reduction of the number of function

evaluations required to compute the integral. I will use Algorithm 4.2.3 as a means

to adaptively approximate the optimization problems of interest. I will discuss the

application of Algorithm 4.2.3 in Chapter 5.

4.2.3 Properties of the Tensor Product Operator, LI

I will now discuss some consequences of the tensor product operators defined in (4.2.1).

Namely, I will prove a result concerning the interpolation properties of LI . In general,

LI need not be interpolatory. In this subsection, I will prove a result characterizing

in which cases LI is, in fact, interpolatory. Furthermore, I will discuss the polynomial

exactness properties of LI .

Associated with each operator, LI is a finite set of interpolation knots often called

a “sparse grid.” The combination technique, (4.2.2), gives an efficient representation
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of this sparse grid through the coefficients

c(i) :=
∑

z∈{0,1}M

(−1)|z|χI(i + z) 6= 0.

As discussed above, the only indices of consequence to the operator, LI , are those for

which c(i) 6= 0, i.e. Î := {i ∈ I : c(i) 6= 0}. Each tensor product operator Li for i ∈ Î

requires function evaluations at tensor products of knots from the one dimensional

interpolation abscissa, Nk,j. The set of tensor product knots (sparse grid) associated

with LI is thus defined as

NI :=
⋃
i∈bI

(N1,i1 × · · · × NM,iM ). (4.2.3)

Notice that the size the sparse grid is bounded above by

|NI | ≤
∑
i∈bI
|N1,i1| · . . . · |NM,iM | =

∑
i∈bI

M∏
k=1

mk,ik

and further reduction of the size of NI is achieved if the one dimensional knots, Nk,j,

are nested or weakly nested.

4.2.3.1 Polynomial Exactness

To fully describe the polynomial space for which LI is exact, notice that for

k = 1, . . . ,M , the sequence {mk,j}∞j=1 is associated with functions mk : N → N by

the relation, mk(i) = mk,i. This mapping is monotone and injective. Therefore, mk

has a left inverse. In fact, one possible left inverse of mk is

m−1
k (p) = min {i ∈ N : mk(i) ≥ p} .

This choice of m−1
k is an increasing function and satisfies the following two properties

m−1
k (mk(i)) = i and mk(m

−1
k (p)) ≥ p

see [12, 9] for more details. To simplify notation, let

m(i) := (m1(i1), . . . ,mM(iM)) and m−1(p) := (m−1
1 (p1), . . . ,m

−1
M (pM)).
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Now, define the set of polynomial degrees

Λ(I,m) :=
{
p ∈ NM : m−1(p + 1) ∈ I

}
.

The following proposition shows that the tensor product operator, LI , is exact for all

polynomials with degree in Λ(I,m).

Proposition 4.2.4 Suppose I ⊂ NM is admissible and the corresponding operator,

LI, defined by (4.2.1) is built on one dimensional Lagrange interpolating polynomials.

Then for any f ∈ C0
ρ(Γ),

LIf ∈ P(Γ, I,m) := span

{
M∏

k=1

ypk

k : p ∈ Λ(I,m), y ∈ Γ

}
. (4.2.4)

Furthermore, LI p = p for any p ∈ PI.

Proof: Define Pj(Γ) := span
{∏M

k=1 y
pk

k : p ≤ j, y ∈ Γ
}

and notice that for any

f ∈ C0(Γ), one has ∆if ∈ Pm(i)−1(Γ). Therefore,

LIf ∈ span

{⋃
i∈I

Pm(i)−1(Γ)

}

= span

{⋃
i∈I

span

{
M∏

k=1

ypk

k : p ≤m(i)− 1

}}

= span

{⋃
i∈I

span

{
M∏

k=1

ypk

k : m−1(p + 1) ≤ i

}}

= span

{
M∏

k=1

ypk

k : m−1(p + 1) ∈ I

}
= PI(Γ).

Note that the third equality follows since I is admissible. This proves (4.2.4).

Now, I will prove that LI is exact for any f ∈ P(Γ, I,m). By linearity of LI ,

one only needs to prove that LI is exact for the monomial, f(y) =
∏M

k=1 y
pk

k , with

p ∈ Λ(I,m). Fix p ∈ Λ(I,m), then for any i ∈ I,

(∆if)(y) = ∆i

M∏
k=1

ypk

k =
M∏

k=1

(Lk,ik − Lk,ik−1)y
pk

k .
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Since Lk,j is exact for polynomials of degree mk(j)−1 or less, (Lk,ik −Lk,ik−1)y
pk

k = 0

whenever pk ≤ mk(ik − 1)− 1. Now, define the index

ī := (̄i1, . . . , īM) with īk = m−1
k (pk + 1), k = 1, . . . ,M.

The index ī satisfies ī ∈ I since p ∈ Λ(I,m). Moreover, for any i ≥ ī,

(Lk,ik − Lk,ik−1)y
pk

k = 0 by construction. Therefore,

LI
M∏

k=1

ypk

k =
∑
i∈I

M∏
k=1

(Lk,ik − Lk,ik−1)y
pk

k

=
∑
i≤ī

M∏
k=1

(Lk,ik − Lk,ik−1)y
pk

k

=
M∏

k=1

īk∑
ik=1

(Lk,ik − Lk,ik−1)y
pk

k

=
M∏

k=1

Lk,̄iky
pk

k .

The third equality follows because the index set defined by

i ∈ NM such that i ≤ ī

corresponds to a (possibly anisotropic) tensor product rule. Finally, since

mk (̄ik) = mk(m
−1
k (pk + 1)) ≥ pk + 1,

the one dimensional interpolant Lk,̄ik is exact for the monomial, ypk

k . This holds for

all k = 1, . . . ,M and therefore, LI is exact on P(Γ, I,m). 2

Barthelmann et al. [15] and Bäck et al. [14] prove similar results for the case when I

represents classic isotropic and anisotropic Smolyak sparse grids.

4.2.3.2 Interpolation

The combination technique, (4.2.2), shows that the tensor product operator, LI , has

the specific form

(LIf)(y) =

QI∑
q=1

Lq(y)f(yq)
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where QI := |NI |, NI = {yq}QIq=1 and Lq ∈ P(Γ, I,m) for q = 1, . . . , QI . The goal

of this section is to prove under certain circumstances that Lq is interpolatory, i.e.

Lq(ys) = δqs for q, s = 1, . . . , QI . In general, interpolation is not guaranteed for

the operator, LI . This fact can be seen by grouping nonzero coefficients, c(i), in

the combination technique form of LI . It is clear to see that the operator LI is

interpolatory for tensor product rules (i.e. I = ITP(`,M)) and Barthelmann et al.

[15] prove this interpolation property for isotropic Smolyak rules (i.e. I = ISM(`,M))

as long as the one dimensional interpolation knots are nested. Similar results holds

for anisotropic Smolyak [85]. These results can be generalized to the case of arbitrary

admissible index sets, I, as long as the one dimensional nodes are nested.

Proposition 4.2.5 If I ⊂ NM is an admissible index set and

Nk,j ⊂ Nk,j+1 ∀j > 0

for k = 1, . . . ,M , then LI is interpolatory; that is, for any f ∈ C0
ρ(Γ),

(LIf)(y) = f(y) ∀ y ∈ NI .

Proof: To prove this proposition, I will assume that J ⊂ NM is an admissible

index set such that LJ is interpolatory. I will then add an index, j ∈ NM , to J such

that J ∪{j} remains admissible and prove that the resulting operator, LJ∪{j}, is also

interpolatory.

Suppose J ⊂ NM is an admissible index set such that LJ is interpolatory. Further-

more, suppose that LJ is constructed using one dimensional interpolations operators

built on nested interpolation knots

Nk,j ⊂ Nk,j+1 ∀j > 0 for k = 1, . . . ,M.

Now, suppose the index j ∈ NM \J is such that J ∪{j} is admissible. I will consider

two cases: ȳ ∈ NJ and ȳ ∈ Nj \ NJ , where Nj := N1,j1 × · · · × NM,jM
and NJ is

defined above. without loss of generality, assume

f = f1 · . . . · fM ∈ C0
ρ1

(Γ1)⊗ · · · ⊗ C0
ρM

(ΓM) ⊂ C0
ρ(Γ).
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For any ȳ ∈ NJ , it is easy to see from (4.2.1) that

(LJ∪{j}f)(ȳ) = (LJ f)(ȳ) + (∆jf)(ȳ) = f(ȳ) +
M∏

k=1

(∆k,jk
fk)(ȳk)

since LJ is interpolatory. Since j 6∈ J and J ∪ {j} is admissible, there exists a

k ∈ {1, . . . ,M} such that jk > ik for all i ∈ J . By definition of NJ , ȳk ∈ Nk,i for

at least one i < jk. Therefore, the nestedness of the one dimensional nodes implies

ȳk ∈ Nk,jk−1 ⊂ Nk,jk
. This shows that ∆jk

fk(ȳk) = 0 and hence

(LJ∪{j}f)(ȳ) = f(ȳ) +
M∏

k=1

(∆k,jk
fk)(ȳk) = f(ȳ),

proving that LJ∪{j} is interpolatory on the sparse grid, NJ .

On the other hand, for any ȳ ∈ Nj \ NJ . Define the set

Jj :=
{
i ∈ NM : i ≤ j

}
.

By admissibility, Jj ⊂ J ∪ {j} and Jj \ {j} ⊂ J . With this definition, one can write

(LJ∪{j}f)(ȳ) = (LJj
f)(ȳ) + (LJ\Jj

f)(ȳ).

Notice that LJj
defines the anisotropic tensor product operator, Lj, which is interpo-

latory. Furthermore, notice that

J \ Jj = {i ∈ J : ∃ k ∈ {1, . . . ,M} such that ik > jk} .

Therefore, given an index i ∈ J \Jj, there exists k ∈ {1, . . . ,M} such that ik > jk. By

nestedness of the one dimensional nodes, it follows that ȳk ∈ Nk,jk
⊂ Nk,ik−1 ⊂ Nk,ik .

This implies that (∆if)(ȳ) = 0 for all i ∈ J \ Jj. Hence,

(LJ∪{j}f)(ȳ) = (LJj
f)(ȳ) + (LJ\Jj

f)(ȳ) = (Ljf)(ȳ) = f(ȳ),

and thus completing the proof of Proposition 4.2.5. 2
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4.2.3.3 Approximation Error

The previous results described the polynomial exactness and interpolation properties

of the operator, LI , for admissible index sets, I. My goal, now, is to give an explicit

representation of the interpolation error associated with LI . First, I will present the

necessary notion for the results to follow. Secondly, I will prove a lemma which gives a

specific form for the interpolation error. Finally, I will extend this specific error form

to the case of interpolating functions with analytic extensions one tensor products of

one dimensional Clenshaw-Curtis knots.
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Figure 4.4: The left image contains the level 4 isotropic Smolyak index set, I, (blue)

and corresponding forward margin, M(I) (red). The right image depicts IM = I

with M = 2 (blue and grey) and the recursively defined I1 (grey).

The results in this section are highly dependent on the notion of the forward

margin of the admissible index set, I. I will denote this forward margin by

M(I) := {i + ek 6∈ I : k = 1, . . . ,M}

where ek denotes the index with 1 in the kth position and zeros everywhere else. See

Figure 4.4 for an example of the forward margin. Additionally, the results will be
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dependent on the following recursively defined sequence of sets

IM := I and Id :=
{
i ∈ Nd : ∃ id+1 ∈ N such that (i, id+1) ∈ Id+1

}
for d = M − 1 . . . , 1 (e.g. see Figure 4.4 for a two dimensional example of these

recursively defined index sets). Since I is an admissible subset of NM , Id is an

admissible subset of Nd. Furthermore, I will use the functions πd : Id → N defined by

πd(i) := max {id+1 ∈ N : (i, id+1) ∈ Id+1} .

From this definition, it is clear that for all i ∈ Id, the index, j = (i, id) ∈ Id+1 for

all id ≤ πd(i). The following result is a generalization of arguments in the proof of

Lemma 3.2 in [85]. The result in [85], is specifically for anisotropic Smolyak sparse

grid operators built on the index sets

I = Xα(`,M) =

{
i ∈ NM :

M∑
k=1

(ik − 1)αk ≤ `ᾱ

}

where ᾱ := min1≤k≤M αk. The corresponding sets, Id, are denoted by Id = Xα(`, d),

the margins are denoted M(Id) = X̃α(`, d), and the mapping πd has the particular

form,

πd(i) =

⌊
1 + `

ᾱ

αd+1

−
d∑

k=1

(ik − 1)
αk

αd+1

⌋
where b·c denotes the floor of a real number. The following notation will be used

in the statement and proof of Lemma 4.2.6. Let Id denote the identity operator on

L2
ρd

(Γd) and Îd denote the identity operator acting on L2bρd
(Γ̂d) where Γ̂d :=

∏d
k=1 Γk

and ρ̂d =
∏d

k=1 ρk for d = 1, . . . ,M , i.e. Îd =
⊗d

k=1 Ik.

Lemma 4.2.6 The error associated with the tensor product interpolation operator,

LI, built on an admissible index set, I ⊂ NM , has the particular form

(̂IM − LI) =
M∑

k=1

(Rk ⊗ ÎM−k)
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where the operators, Rk, are defined as

Rk :=
∑

i∈Id−1

{
d−1⊗
k=1

∆k,ik

}
⊗ (Id − Ld,bid−1)

and îd = πd−1(i) + 1.

Proof: By admissibility of I, the index (i, iM) ∈ I for all 1 ≤ k ≤ πM−1(i);

therefore, the following decomposition of LI is valid

LI =
∑
i∈I

M⊗
k=1

∆k,ik

=
∑

i∈IM−1

{
M−1⊗
k=1

∆k,ik

}
⊗

{
πM−1(i)∑

d=1

∆M,d

}

=
∑

i∈IM−1

{
M−1⊗
k=1

∆k,ik

}
⊗ LM,πM−1(i) (4.2.5)

Now, plugging the decomposition (4.2.5) into the tensor product interpolation error

gives

ÎM − LI = ÎM −
∑

i∈IM−1

{
M−1⊗
k=1

∆k,ik

}
⊗

{
LM,πM−1(i) − IM

}

−
∑

i∈IM−1

{
M−1⊗
k=1

∆k,ik

}
⊗ IM

=
∑

i∈IM−1

{
M−1⊗
k=1

∆k,ik

}
⊗

{
IM − LM,πM−1(i)

}
+ (̂IM−1 − LIM−1

)⊗ IM

=
M∑

k=2

(Rk ⊗ ÎM−k) + (I1 − LI1)⊗ ÎM−1.

Here, Rd is defined as

Rd :=
∑

i∈Id−1

{
d−1⊗
k=1

∆k,ik

}
⊗ (Id − Ld,bid−1)

and îd = πd−1(i) + 1. This proves the desired result since R1 = (I1 − LI1). 2
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I will now use Lemma 4.2.6 to prove an upper bound on the error of interpolating

functions f ∈ C0
ρ(Γ) which admit an analytic extension in each direction, Γk, on the

elliptic discs, Drk
(Γk), using the tensor product operator, LI , built on one dimen-

sional Clenshaw-Curtis interpolation knots. Of course, these results are valid only for

Γk = [ak, bk] with −∞ < ak < bk < ∞, for k = 1, . . . ,M , endowed with a uniform

distribution. This result is a generalization of Lemma 3.2 in [85].

Corollary 4.2.7 Suppose f ∈ L2
ρ(Γ) has an analytic extension in each direction,

Γk, on the elliptic discs, Drk
(Γk). Furthermore, suppose LI is built on one dimen-

sional Clenshaw-Curtis interpolation knots. Then the error associated with the tensor

product interpolation operator, LI, satisfies the upper bound

‖f − LIf‖L∞ρ (Γ) ≤
M∑

k=1

Rk

where

Rk :=
∑

i∈M(Ik)

CDk−1

(
k∏

d=1

id

)
e−h(i,k) and h(i, k) =

k∑
d=1

log(rd)2
id−1,

and C, D are positive constants defined in (4.1.4) and (4.1.5).

Proof: By Lemma 4.2.6, the interpolation error satisfies

(̂IM − LI) =
M∑

k=1

(Rk ⊗ ÎM−k).

The principal task is to bound the norms of Rd. First, notice that (i, îd) ∈ M(Id)

for all i ∈ Id−1. Now,

‖Rdf‖C0
ρ(Γ) ≤

∑
i∈Id−1

{
d−1∏
k=1

‖∆k,ikf‖C0
ρ(Γ)

}
· ‖f − Ld,bid−1f‖C0

ρ(Γ)

≤
∑

i∈Id−1

CDd−1

(
d−1∏
k=1

ik

)
(̂id − 1) exp

(
−

d−1∑
k=1

log(rk)2
ik−1 − log(rd)2

bid−1
)

≤
∑

i∈M(Id)

CDd−1

(
d∏

k=1

ik

)
e−h(i,d) =: Rd.
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This proves the desired result since R1 = (I1−LI1) and R1 :=
∑

i∈M(I1)Cie
− log(r1)2i−1

.

2

Corollary 4.2.7 shows that the error associated with the tensor product interpolation

operator, LI , is concentrated on the margin of I. Therefore, in the adaptive selection

of an index set, I, it is sufficient to control the error on the margin of that index set,

M(I). In this case, the convergence of Algorithm 4.2.3 holds when using the error

indicators

ηi = CDd−1

(
d∏

k=1

ik

)
e−h(i,d)

for all indices i ∈ M(Id). In general, this error bound is not computable since one

often does not know the semi-axis lengths of the ellipses in C for which a function has

an analytic extension. On the other hand, one can use the results in Corollary 4.2.7

to prove usable error bounds for specific choices of index set, I. In Corollary 4.2.8,

I restate Theorem 3.4 from [85]. This result uses Corollary 4.2.7 to prove an error

bound for the anisotropic Smolyak sparse grid based on the index set

I = Xα(`,M) =

{
i ∈ NM :

M∑
k=1

(ik − 1)αk ≤ `ᾱ

}
.

To clearly state this result, I will employ the following notation:

ᾱ := min
k=1,...,M

αk and A :=
M∑

k=1

αk.

Corollary 4.2.8 (Theorem 3.4 in [85]) Suppose f ∈ L2
ρ(Γ) has an analytic exten-

sion in each direction, Γk, on the elliptic discs, Drk
(Γk). Furthermore, suppose LI is

built on one dimensional Clenshaw-Curtis interpolation knots and I corresponds to

the anisotropic Smolyak index set

I = Xα(`,M) =

{
i ∈ NM :

M∑
k=1

(ik − 1)αk ≤ `ᾱ

}

with αk = log
(

2rk

|Γk|
+
√

1 +
4r2

k

|Γk|2

)
. Then, the interpolation error associated with LI

is bounded by

‖f − LIf‖L∞ρ (Γ) ≤ C(α,M) e`−µ(`,M)
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where

µ(`,N) :=


` e log(2) ᾱ

2
if 0 ≤ ` ≤ A

ᾱ log(2)

A
2
2

`ᾱ
A otherwise

and the constant C = C(α,M) is independent of the level `.

Proof: This result follows from Corollary 4.2.7 and Lemma 3.3 in [85]. 2

The authors of [85] extend the error bound in Corollary 4.2.8 to be dependent on

the number of interpolation knots. In Theorem 3.8 of [85], the authors prove that

under the conditions of Corollary 4.2.8, the interpolation error associated with LI
satisfy

‖f − LIf‖L∞ρ (Γ) ≤ C(α,M)Q−ν (4.2.6)

where ν := ᾱ log(2)e−1

log(2)+
PM

k=1
ᾱ

αk

whenever 0 ≤ ` ≤ A
ᾱ log(2)

. The reader will recall that the

error bound (4.2.6) is exactly the bound required by Assumption 3.2.4. Furthermore,

in the case that A
ᾱ log(2)

< `, one gets sub-exponential convergence of the sparse grid

algorithm (c.f. equation 3.23 in [85]).

Remark 4.2.9 Similar error bounds hold for anisotropic Smolyak rules built on

Gaussian interpolation knots (see Theorem 3.13 in [85]). Moreover, similar error

bounds hold for isotropic Smolyak and tensor product rules built on Clenshaw-Curtis

and Gaussian interpolation knots (see Theorem 6.2 in [9] for convergence of isotropic

Smolyak and Theorem 4.1 in [9] for convergence of tensor product rules).



Chapter 5

Trust Regions and Adaptivity

In this chapter, I develop a framework for the adaptive solution of optimization gov-

erned by PDEs with uncertain coefficients. This framework is built on the retro-

spective trust region algorithm. I prove that, with inexact gradient information,

this modified trust region algorithm remains globally convergent. In the trust region

framework, I use inexact gradient bounds and a posteriori error indicators to guide

model adaptation. For optimization of PDEs with uncertain coefficients, one requires

error indicators for the finite element method, the sparse grids used in the stochastic

collocation method, and the model reduction basis in the case of time dependent

problems.

The trust region method is a very popular and powerful optimization framework

for solving general nonlinear programming problems [81, 82, 94, 109, 41]. The trust

region framework offers quite a bit of flexibility in exactness of function evaluations

and gradients. In fact, one can prove global convergence of the trust region method

when the function evaluations are inexact [41], as well as, when the gradient eval-

uations are inexact [36]. This flexibility makes the trust region framework an ideal

candidate for a general model adaptation framework for solving PDE constrained op-

timization problems. Much work has gone into trust region frameworks for managing

approximate models in optimization [43, 44, 3]. This model management framework

88
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is the basis of my adaptive framework.

5.1 The Basic Trust Region Algorithm

In this section, I will formulate the basic trust region algorithm for unconstrained

optimization in a Hilbert space. Let Z be a Hilbert space. The basic trust region

algorithm for solving the nonlinear programming problem

min
z∈Z

Ĵ(z)

seeks to compute steps, zk+1 = zk + sk ∈ Z, by solving an “inexpensive” subproblem.

In the classic trust region theory, inexpensive subproblems are constructed using

second order Taylor approximations of Ĵ(z) centered around the current iterate, zk.

Taylor approximations are, in general, accurate in a small ball containing the iterate,

zk. Such a ball gives rise to the notion of a trust region and the basic trust region

subproblem is

min
s∈Z

mk(s) subject to ‖s‖Z ≤ ∆k (5.1.1)

for some inexpensive model, mk : Z → R and mk(s) ≈ Ĵ(zk + s), and some positive

scalar, ∆k > 0. The steps computed by solving the subproblem need not be exact

minimizers. In general, (5.1.1) need not have a solution since the set

Bk := {s ∈ Z : ‖s‖Z ≤ ∆k}

may not be compact for a general Hilbert space, Z (c.f. page 275 in [41]). The trust

region theory only requires the solution of the subproblem to satisfy the fraction of

Cauchy decrease condition

mk(0)−mk(sk) ≥ κ0‖∇mk(0)‖Z min
{

∆k,
‖∇mk(0)‖Z

βk

}
(5.1.2)

where κ0 ∈ (0, 1) and βk = 1 + sups∈Bk
‖∇2mk(s)‖L(Z,Z). The fraction of Cauchy

decrease condition (5.1.2) ensures that the decrease in the modeled objective function,
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mk(s), corresponding to the approximate solution of (5.1.1) is at least as large as the

decreases of mk(s) corresponding to the minimizer of (5.1.1) in the negative gradient

(−∇mk(0)) direction, i.e. the Cauchy point. The basic trust region algorithm is stated

in Algorithm 5.1.1.

Algorithm 5.1.1 - Basic Trust Region Algorithm:

1. Initialization: Given mk, zk, ∆k, γ1 < 1 < γ2, and 0 < η1 < η2 < 1.

2. Step Computation: Approximate a solution, sk, to the trust region sub-

problem (5.1.1) which satisfies condition (5.1.2).

3. Step Acceptance: Compute the ratio ρk = aredk

predk
where

predk = mk(0)−mk(sk) and aredk = Ĵ(zk)− Ĵ(zk + sk).

if ρk ≥ η1 then zk+1 = zk + sk else zk+1 = zk end if

4. Trust Region Radius Update:

if ρk ≤ η1 then ∆k+1 ∈ (0, γ1‖sk‖Z ] end if

if ρk ∈ (η1, η2) then ∆k+1 ∈ [γ1‖sk‖Z ,∆k] end if

if ρk ≥ η2 then ∆k+1 ∈ [∆k, γ2∆k] end if

5. Model Update: Choose a new model mk+1(s).

The standard assumptions on the objective function, Ĵ(z), and the successive ap-

proximations of the objective function, mk(s), which guarantee first order convergence

of Algorithm 5.1.1 are

Assumptions 5.1.2 - Basic Trust Region:

• Ĵ is twice continuously Fréchet differentiable and bounded below;
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• mk is twice continuously Fréchet differentiable for k = 1, 2, . . .;

• There exists κ1 > 0 such that ‖∇2Ĵ(z)‖L(Z,Z) ≤ κ1 for all z ∈ Z;

• There exists κ2 ≥ 1 such that ‖∇2mk(s)‖L(Z,Z) ≤ κ2 − 1 for all z ∈ Z and for

all k = 1, 2, . . .;

• There exists ξ > 0 independent of k such that

‖∇mk(0)−∇Ĵ(zk)‖Z ≤ ξmin{‖∇mk(0)‖Z ,∆k} (5.1.3)

for k = 1, 2, . . ..

The inexact gradient condition, (5.1.3), is due to Heinkenschloss and Vicente [60].

This condition is slightly stronger than the classic condition due to Carter [36]

‖∇mk(0)−∇Ĵ(zk)‖Z ≤ ξ‖∇mk(0)‖Z

with ξ < 1 − η2. The downside of this gradient condition is that ξ is required to be

less than 1. In many practical applications, one does not know exactly the scaling

coefficients in front of their error bounds. Thus, (5.1.3) is preferable to compute

with since one does not need to know ξ exactly. As stated, these assumptions are

sufficient to show that Algorithm 5.1.1 converges to a first order stationary point (c.f.

see [81, 41]).

5.2 The Retrospective Trust Region

In Algorithm 5.1.1, the trust region radius, ∆k, is always updated according to the

current model, mk(s); hence, the new trust region radius, ∆k+1, may be insufficient to

handle the new model, mk+1(s). Bastin, et al. created the retrospective trust region

algorithm to circumvent this possible pitfall [17]. In the retrospective framework,

steps are accepted according to the performance index

ρk =
aredk

predk

=
Ĵ(zk)− Ĵ(zk + sk)

mk(0)−mk(sk)



92

as in Algorithm 5.1.1, but the trust region radius is updated retrospectively according

to the new model. Once a step is accepted according to ρk, the model is updated to

mk+1(s) and one computes the retrospective performance index

ρ̃k =
Ĵ(zk)− Ĵ(zk + sk)

mk+1(0)−mk+1(sk)
.

Using this index, ρ̃k, the trust region radius is fit to the new model, mk+1(s). As

with Algorithm 5.1.1, one need not solve the trust region subproblem exactly. The

approximate solution to the trust region subproblem must satisfy the fraction of

Cauchy decrease condition (5.1.2). The retrospective trust region algorithm is stated

in Algorithm 5.2.1.

Algorithm 5.2.1 - Retrospective Trust Region Algorithm:

1. Initialization: Given mk, zk, ∆k, 0 < γ1 ≤ γ2 < 1, ∆max > 0, 0 < η0 < 1,

and 0 < η1 < η2 < 1.

2. Step Computation: Approximate a solution, sk, to the trust region sub-

problem (5.1.1) which satisfies (5.1.2).

3. Step Acceptance: Compute the ratio ρk = aredk

predk
where

predk = mk(0)−mk(sk) and aredk = Ĵ(zk)− Ĵ(zk + sk).

if ρk ≥ η0 then zk+1 = zk + sk else zk+1 = zk end if

4. Model Update: Choose a new model, mk+1.

5. Trust Region Radius Update:

if zk+1 = zk then ∆k+1 ∈ (0, γ1‖sk‖Z ]

else define

ρ̃k+1 =
Ĵ(zk+1)− Ĵ(zk)

mk+1(0)−mk+1(−sk)
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and update ∆k+1 by

if ρ̃k+1 ≤ η1 then ∆k+1 ∈ (0, γ2‖sk‖Z ] end if

if ρ̃k+1 ∈ (η1, η2) then ∆k+1 ∈ [γ2‖sk‖Z ,∆k] end if

if ρ̃k+1 ≥ η2 then ∆k+1 ∈ [∆k,∆max] end if

The assumptions I will make on the objective function, Ĵ(z), and the successive

approximations to the objective function, mk(s), to guarantee first order convergence

are

Assumptions 5.2.2 - Retrospective Trust Region:

• Ĵ is twice continuously Fréchet differentiable and bounded below;

• mk is twice continuously Fréchet differentiable for k = 1, 2, . . .;

• There exists κ1 > 0 such that ‖∇2Ĵ(z)‖L(Z,Z) ≤ κ1 for all z ∈ Z;

• There exists κ2 ≥ 1 such that ‖∇2mk(s)‖L(Z,Z) ≤ κ2 − 1 for all s ∈ Z and for

all k = 1, 2, . . .;

• There exists ξ > 0 independent of k such that

‖∇mk(0)−∇Ĵ(zk)‖Z ≤ ξmin{‖∇mk(0)‖Z ,∆k−1} (5.2.1)

for k = 1, 2, . . ..

These assumptions are relaxed from the assumptions made in the original retrospec-

tive trust region work [17]. Namely, Bastin, et al. assume that the model at s = 0,

mk(0), and its gradient at s = 0, ∇mk(0), are equal to the objective function at zk,

Ĵ(zk), and its gradient at zk, ∇Ĵ(zk), respectively. I will prove later that my weaker

assumptions are sufficient to prove that the retrospective trust region algorithm con-

verges to a first order critical point.
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Remark 5.2.3 As seen in Algorithm 5.2.2, each successful step requires two new

model evaluations to compute ρ̃k+1 (i.e. mk+1(0) and mk+1(−sk)). For the optimiza-

tion problems considered in this thesis, additional model evaluations are very expen-

sive as they require the stochastic collocation solution to the state equation. Hence,

for some classes of optimization problems it is unclear whether or not the additional

computational cost of the retrospective trust region algorithm is worth while.

5.2.1 Discussion of Stopping Criterion

As a stopping criterion, I suggest using a model gradient stopping test and a step size

stopping test. First of all, if the computed step, sk is “sufficiently” small (sufficient

here depends on the scaling of the problem), then the trust region algorithm is not

making significant progress and should be terminated. Given a step tolerance stol > 0,

this condition reads

‖sk‖Z ≤ stol.

On the other hand, if the modeled gradient, ∇mk(0), is “sufficiently” small (again

sufficient depends on the scaling of the problem), then the algorithm should be ter-

minated. Moreover, the inexact gradient conditions (5.1.3) implies that

‖∇Ĵ(zk)‖Z ≤ ‖∇Ĵ(zk)−∇mk(0)‖Z + ‖∇mk(0)‖Z ≤ (1 + ξ)‖∇mk(0)‖Z .

Thus, if gtol > 0 and ‖∇mk(0)‖Z < gtol, then it is clear that

‖∇Ĵ(zk)‖Z ≤ (1 + ξ)gtol.

5.2.2 Convergence of the Retrospective Trust Region

In this section, I prove that under Assumptions 5.2.2, the Algorithm 5.2.1 converges

to a first order critical point. First, I prove that the sequence of trust region radii

must converge to zero if the norm of the gradients are bounded away from zero.

Secondly, I show that under these assumptions, ρk and ρ̃k+1 converge to one. Finally,
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these results are combined to prove that Algorithm 5.2.2 converges to a first order

critical point. Most results presented here follow the standard convergence proof for

the basic trust region algorithm provided in Theorem 4.10 in [81], although care must

be taken to handle the retrospective trust region update.

Lemma 5.2.4 Suppose there exists ε > 0 such that ‖∇mk(0)‖Z ≥ ε for k sufficiently

large. Then the sequence of trust region radii, {∆k}, produced by Algorithm 5.2.1

satisfies
∞∑

k=1

∆k <∞.

Proof: First notice that the result of the theorem holds if there is only a finite

number of successful iterations because for sufficiently large k, ∆k+1 ≤ γ1∆k. Now,

if there is an infinite sequence of successful iterations {ki} then for sufficiently large

i the fraction of Cauchy decrease condition (5.1.2) implies

Ĵ(zki
)− Ĵ(zki+1

) ≥Ĵ(zk)− Ĵ(zk+1)

≥η0(mk(0)−mk(sk))

≥η0κ0‖∇mk(0)‖Z min

{
∆k,
‖∇mk(0)‖Z

βk

}
≥η0κ0∆kε.

This implies that
∑∞

i=1 ∆ki
<∞. Furthermore, for every unsuccessful iteration

k 6∈ {ki}, the trust region radius satisfies ∆k ≤ γ
k−kj

1 ∆kj
where kj ∈ {ki} is the

largest index such that kj < k. The convergence of geometric series and the above

result imply that

∑
k 6∈{ki}

∆k ≤
1

1− γ1

∞∑
i=1

∆ki
and

∞∑
k=1

∆k ≤

(
1 +

1

1− γ1

)
∞∑
i=1

∆ki
≤ ∞.

This proves the desired result. 2
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Lemma 5.2.4 will be used to arrive at a contradiction. To obtain this contradiction,

I first must show that for k sufficiently large, Algorithm 5.2.1 produces a successful

step.

Lemma 5.2.5 Suppose there exists ε > 0 such that ‖∇mk(0)‖Z ≥ ε for k sufficiently

large. Then, under Assumptions 5.2.2, the ratios, {ρk}, converge to one.

Proof: By Taylor’s theorem, there exists θk and ηk on the line segment between

s = 0 and s = sk such that

aredk = 〈∇Ĵ(zk), sk〉Z +
1

2
〈∇2Ĵ(θk)sk, sk〉Z

predk = 〈∇mk(0), sk〉Z +
1

2
〈∇2mk(ηk)sk, sk〉Z .

These expansions and Assumptions 5.2.2 imply

|aredk − predk| ≤ ξ∆k−1∆k +
1

2
(κ1 + κ2 − 1)∆2

k.

Furthermore, the fraction of Cauchy decrease condition, (5.1.2), and the assumption

that ‖∇mk(0)‖Z ≥ ε imply that for sufficiently large k,

predk ≥ κ0‖∇mk(0)‖Z min
{

∆k,
‖∇mk(0)‖Z

βk

}
≥ κ0ε∆k.

Combining these inequalities gives

|ρk − 1| ≤ εk =
ξ∆k−1 + 1

2
(κ1 + κ2 − 1)∆k

κ0ε

for sufficiently large k. The sequence {εk} converges to zero by Lemma 5.2.4, there-

fore proving the result. 2

In addition to achieving a successful step, I must also prove that Algorithm 5.2.1

increases the trust region radius. This result is proved in a similar fashion to Lemma 5.2.5.

Lemma 5.2.6 Suppose there exists ε > 0 such that ‖∇mk(0)‖Z ≥ ε for k sufficiently

large. Then, under Assumptions 5.2.2, the ratios, {ρ̃k+1}, converge to one.
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Proof: By Taylor’s theorem, there exists ηk+1 on the line segment between s = 0

and s = −sk such that

mk+1(−sk)−mk+1(0) = −〈∇mk+1(0), sk〉Z +
1

2
〈∇2mk+1(ηk+1)sk, sk〉Z .

This equality, the expansion of predk in the proof of Lemma 5.2.5, Assumptions 5.2.2,

and the reverse triangle inequality imply

|predk| − |(mk+1(−sk)−mk+1(0))| ≤ ‖∇mk+1(0)−∇mk(0)‖Z∆k + (κ2 − 1)∆2
k.

To bound this further, notice that

‖∇mk+1(0)−∇mk(0)‖Z ≤‖∇mk+1(0)−∇Ĵ(zk + sk)‖Z + ‖∇Ĵ(zk + sk)−∇Ĵ(zk)‖Z

+ ‖∇Ĵ(zk)−∇mk(0)‖Z . (5.2.2)

The first and third expressions on the right hand side of (5.2.2) are bounded using

(5.2.1), and the second expression is bounded using the differentiability of Ĵ , i.e.

‖∇Ĵ(zk + sk)−∇Ĵ(zk)‖Z =
∥∥∥∫ 1

0

∇2Ĵ(zk + tsk)skdt
∥∥∥
Z
≤ κ1∆k.

This proves that

|predk| − |mk+1(−sk)−mk+1(0)| ≤ (ξ∆k + ξ∆k−1 + κ1∆k)∆k + (κ2 − 1)∆2
k,

which implies the lower bound

|mk+1(−sk)−mk+1(0)| ≥ |mk(sk)−mk(0)| − ε̃k∆k

with ε̃k = (ξ∆k + ξ∆k−1 + κ1∆k + (κ2 − 1)∆k). The fraction of Cauchy decrease

condition and the assumption that ‖∇mk(0)‖Z ≥ ε imply

|mk+1(−sk)−mk+1(0)| ≥ (κ0ε− ε̃k)∆k.

Since ε̃k converges to zero by Lemma 5.2.4, the right hand side of the above inequality

is non-negative for sufficiently large k. Following the proof of Lemma 5.2.5, these

bounds imply

ρ̃k+1 − 1 ≤
∆k(ξ + 1

2
(κ1 + κ2 − 1))

κ0ε− ε̃k
→ 0 as k →∞.
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This proves the desired result. 2

Combining these results gives the desired result of this section; namely, these

results lead to a proof that Algorithm 5.2.1 converges to a first order critical point.

Theorem 5.2.7 Suppose Assumptions 5.2.2 hold, then

lim inf
k→∞

‖∇mk(0)‖Z = lim inf
k→∞

‖∇Ĵ(zk)‖Z = 0.

Proof: For contradiction, suppose there exists ε > 0 such that ‖∇mk(0)‖Z ≥ ε. By

Lemma 5.2.5, for k sufficiently large, there is a successful step, sk since ρk converges

to one. By Lemma 5.2.6, for k sufficiently large, the trust region radius must be in-

creased since ρ̃k+1 converges to one. This fact contradicts the result of Lemma 5.2.4. 2

5.3 A Framework for Model Adaptivity

Algorithms 5.1.1 and 5.2.1 along with gradient conditions (5.1.3) and (5.2.1), re-

spectively, give natural frameworks for model adaptivity. As long as the modeled

gradients satisfy the gradient error bounds, (5.1.3) and (5.2.1), Algorithms 5.1.1 and

5.2.1, respectively, are globally convergent. Furthermore, in many cases it is impos-

sible (or at least computationally infeasible) to compute ∇Ĵ(z). For such problems,

the bounds (5.1.3) and (5.2.1) ensure global convergence with out the necessity of

computing ∇Ĵ(z) as long as there exists an a posteriori error indicator, η, such that

‖∇Ĵ(zk)−∇mk(0)‖Z ≤ Cη.

Such error indicators exist when the model mk(s) corresponds to a Galerkin approxi-

mation for PDE discretization or a stochastic Galerkin approximation for uncertainty

quantification. These indicators come in many forms such as residual based and ad-

joint based error indicators. When mk(s) denotes a stochastic collocation approxi-

mation (i.e. mk(s) = σ(LIk
j(u(z), z)) for some tensor product interpolation operator,
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LIk
, built on an admissible index set Ik) I approximate the error indicator, η, as the

contribution to the gradient of mk(s) associated with the indices on the margin of

the index set, M(Ik). This can be accomplished by employing Algorithm 4.2.3, in

which case the margin is denoted as the active set, A, and the error indicator is

η :=
∑
i∈A

ηi.

In general, this error indicator is heuristic, but seems to work well in practice. Al-

though convergence of the trust region algorithms cannot be guaranteed in any rigor-

ous manner, Corollary 4.2.7 suggests that this choice of error indicator may, in fact,

be sufficient.

Now, for simplicity, consider the test problem presented in Section 2.1 with risk

measure σ(Y ) = E[Y ] and Algorithm 5.2.1. Denote the objective function based

on the index set Ik as Ĵk(z) and define the collocation approximate model centered

around the iterate zk as mk(s) = Ĵk(zk + s). The model gradient is

∇mk(s) = ∇Ĵk(z) = αz + R−1E ◦ LIk
[B∗p(z)]

= αz + R−1
∑
i∈Ik

E ◦∆iB
∗p(zk)

where p(z) = p solves the adjoint equation (2.3.2). The loop for satisfying the bound

(5.2.1) is presented in Algorithm 5.3.1.

Algorithm 5.3.1 - Model Adaptation:

Let Ik = Ik−1 and A =M(Ik)

Set ηi = ‖E ◦∆iB
∗p(zk)‖Z and η =

∑
i∈A ηi

Compute ∇mk(0) = αzk + R−1
∑

i∈Ik
E ◦∆iB

∗p(zk)

Define TOL = ξmin
{
‖∇mk(0)‖Z ,∆k−1

}
while η > TOL do

Select i ∈ A corresponding to the largest ηi
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Set A ← A \ {i} and Ik ← Ik ∪ {i}

Update the error indicator η = η − ηi
for ` = 1, . . . , d do

Set j = i + e`

if Ik ∪ {j} is admissible then

Set A ← A∪ {j}

Set ηj = ‖E ◦∆jB
∗p(zk)‖Z

Update the gradient ∇mk(0)← ∇mk(0) + R−1E ◦∆jB
∗p(zk)

Update the error indicator η ← η + ηj

Update the tolerance TOL = ξmin
{
‖∇mk(0)‖Z ,∆k−1

}
end if

end for

end while

Algorithm 5.3.1 describes the application of adaptive sparse grid stochastic collo-

cation. In particular, Algorithm 5.3.1 employs dimension adaptive sparse grids. Other

forms of sparse grid adaptivity exist and can be similarly applied. Some other forms

of adaptive sparse grids are domain adaptive sparse grids which refer to partition-

ing the domain and placing sparse grids in each sub-domain [1] and locally adaptive

sparse grids which refers to the use of continuous piecewise linear interpolation as a

basis for the sparse grids. In case of local adaptation, one can add points locally and

maintain the desirable properties of sparse grids [73].

In general, there may be multiple discretizations necessary to approximately solve

the state equation (2.2.4). In the case that e(u, z; y) denotes a nonlinear steady PDE,

the stochastic collocation results in Q nonlinear PDEs to be solved, i.e. e(uk, z; yk) =

0. The finite element method (FEM) is a common approach to discretizing e(uk, z; yk)

in space. Let Vh := span{φ1, . . . , φN1} ⊂ V be a finite dimensional subspace of
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the deterministic state space V and let W∗
h := span{ψ1, . . . , ψN2} ⊂ W∗ be a finite

dimensional subspace ofW∗. The Petrov-Galerkin finite element discretization of the

kth state equation is〈
ψm, e

( N1∑
n=1

uk,nφn, z; yk

)〉
W∗,W

= 0 ∀ m = 1, . . . , N2 (5.3.1)

and one solves for the vector ~uk := (uk,1, . . . , uk,N1)
> ∈ RN1 . When coupling FEM

with stochastic collocation, there is a natural error splitting. Let uQh = uQh(z) ∈

L2
ρ(Γ;Vh) denote the stochastic collocation solution computed by solving (5.3.1), then

the error in the solution to the state equation can be bounded by

‖u(z)− uQh(z)‖U ≤ ‖u(z)− uQ(z)‖U + ‖uQ(z)− uQh(z)‖U .

The first term of this bound is controlled by interpolation, while the second term is

controlled by controlling the finite element error. Many approaches exist to adaptively

control the error associated with FEM. One popular method is to use residual based

error indicators. These indicators are computed using the residual

Rk = e
( N1∑

n=1

uk,nφn, z; yk

)
[35]. Other possible methods are averaging techniques [33] and adjoint based, goal

oriented error indicators [61]. Moreover, the authors of [127] employ these FEM error

indicators in the context of PDE constrained optimization using the trust region

framework.

Similar observations and error control can be performed for the solution to the

adjoint equation. Recall that the gradient conditions (5.1.3) and (5.2.1), and the spe-

cific form of the gradient place much emphasis on controlling the error in the adjoint

state. Care must be taken when controlling the adjoint error because the adjoint

directly depends on the solution to the state equation. When solely considering the

stochastic collocation discretization, the state error is automatically controlled due to

the interpolation properties of LI , i.e. pk = pk(uk(z)) depends on uk = uk(z) which is
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exactly the solution to e(uk, z; yk) = 0 for k = 1, . . . , Q. When considering other dis-

cretization techniques, the adjoint error control must also contain state error control.

Typically, error bounds for the FEM discretization are

‖p(u(z))− ph(uh(z))‖W∗ ≤C1‖u(z)− uh(z)‖U

+ C2‖p̂(uh(z)− ph(uh(z))‖W∗

where p = p(u(z)) ∈ W∗ is the solution to the infinite dimensional adjoint equation

(2.3.2) and p̂ = p̂(uh(z)) ∈ W∗ is the solution to the infinite dimensional adjoint

equation (2.3.2) with u(z) replaced by uh(z).

With the above discussion in mind, one can incorporate both the finite element

and collocation error in the adaptive loop 5.3.1 by performing the error splitting

‖∇Ĵ(z)−∇ĴQh(z)‖Z ≤ ‖∇Ĵ(z)−∇ĴQ(z)‖Z + ‖∇ĴQ(z)−∇ĴQh(z)‖Z

where ĴQ(z) denotes the collocation discretization of the objective function and ĴQh(z)

denotes the collocation and finite element discretized objective function. Note, the

first term only deals with collocation error and the second term only deals with finite

element error. Now, suppose one is considering adding an index, k, to the current

generalized sparse grid index set, I. If I∪{k} remains admissible, then one can derive

the error indicator ηk (again, note that this is only collocation discretized and, thus,

not necessarily computable). If one defines a similar error indicator for the stochastic

collocation finite element discretized problem, ηh
k, then one can approximate ‖ηk‖Z

as

‖ηk‖Z ≤ ‖ηk − ηh
k‖Z + ‖ηh

k‖Z .

Here, the first term is controlled by the finite element error. Controlling the error in

the first term so that

‖ηk − ηh
k‖Z ≤ c‖ηh

k‖Z ,

where c > 0 is fixed, will give the error bound

‖ηk‖Z ≤ (c+ 1)‖ηh
k‖Z
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which depends only on the computable quantity, ‖ηh
k‖Z .

In the case of time dependent PDE operators e(u, z; y), one can consider adaptive

time stepping and adaptive basis selection for model order reduction. In [77] and

[78, 79], the authors perform adaptive time stepping for the optimal control of de-

terministic parabolic PDEs. In these works, the authors incorporate error control for

both finite element and time stepping discretization. On the other hand, the authors

of [48] employ the trust region framework to adaptive build reduced order models for

parabolic control problems. In this work, the reduced order models are built using

proper orthogonal decomposition. In general, the trust region algorithms are flexible

enough to handle any sort of model adaptivity so long as the gradient conditions

(5.1.3) and (5.2.1) are satisfied. Hence, it is possible to incorporate these additional

adaptive strategies using Algorithm 5.3.1 and similar arguments as above.



Chapter 6

Implementation Details

This chapter is dedicated to considerations for a high performance implementation

of the adaptive stochastic collocation and trust region framework described in this

thesis. When discretized, the optimization problems discussed here are extremely high

dimensional and computationally intensive. The numerical solution of these problems

is challenging to say the least. When implementing the methods discussed in this

thesis, one must exploit the natural parallelism of the stochastic collocation method.

Furthermore, one must use efficient large-scale nonlinear programming techniques in

the implementation of Algorithms 5.1.1 and 5.2.1. I will first discuss implementation

of a high fidelity discretization of the objective function and ways to exploit multiple

forms of parallelism in function evaluations and derivative computations. I will then

present nonlinear programming ideas to accelerate the trust region approach.

6.1 High Fidelity Objective Computation

The implementation of Algorithms 5.1.1, 5.2.1, and 5.3.1 require careful consider-

ation. There are many implementation details that can significantly improve the

performance of these algorithms. When using either trust region algorithm, one must

compute the ratio between actual and predicted decrease, ρk. Each evaluation of this

104
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ratio requires the computation of the objective function, Ĵ(z). In general, the objec-

tive function need not be discretized if one is able to evaluate the infinite dimensional

function Ĵ(z). This is almost never the case. Since this thesis is concerned with dis-

cretization of the stochastic space, I will discretize Ĵ(z) using stochastic collocation.

This discretization must be high fidelity in order for adaptivity to be meaningful.

Thus, for this high fidelity discretization, I will use isotropic Smolyak sparse grids of

high level (c.f. see the definition in Remark 4.2.2). Recall here that Corollary 3.4.2 and

Theorem 3.4.4 prove convergence for such discretizations. Using isotropic Smolyak

sparse grids for the high fidelity discretization is advantageous because these inter-

polation operators require much fewer interpolation knots as opposed to full tensor

product interpolation. Furthermore, a priori knowledge of the anisotropy in the opti-

mization problem is typically not available. Without this knowledge, one cannot build

meaningful anisotropic sparse grids. As a consequence of the adaptive loop (5.3.1),

the resulting adapted sparse grid contains information concerning the anisotropy as-

sociated with the optimization problem. This anisotropy can be visualized using the

final index set, I, and can be used to help characterize the importance of the random

variables in Γ.

Although isotropic Smolyak sparse grids provide a reduction in computational

cost when compared to full tensor product grids, they still pose a possibly enormous

computational burden. Adaptive collocation allows for relatively cheap step compu-

tation in the trust region framework, but this may be outweighed by the high fidelity

function evaluations required at each iteration. Since my adaptive framework uses

low order adapted sparse grids to compute gradients and Hessian information, there is

a clear advantage when compared to Newton-CG applied to the high fidelity problem

as long as many trust region iterations are not required. Note that in the adaptive

framework, if the knots associated with the adapted sparse grids are subsets of those

associated with the high fidelity sparse grid (i.e. nested knots), one can re-use state

computations. Further efficiency can be achieved by exploiting the almost trivial
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parallelism of the stochastic collocation method.

6.2 Parallel Collocation and Linear Algebra

The stochastic collocation method described in this thesis lends itself naturally to

parallel implementation. The stochastic collocation method for the solution of (2.2.4)

requires the decoupled solutions of

ẽ(uk, z; yk) = 0 ∀ k = 1, . . . , Q

for fixed z ∈ Z. Additionally, in the optimization context, one must solve the adjoint

equation (2.3.2)

ẽu(uk, z; yk)
λ
k + jv(uk, z) = 0 ∀ k = 1, . . . , Q.

The solution to the adjoint equation at the kth collocation point, λk, depends on the

solution to the state equation at the kth collocation point, uk. Therefore, the state and

adjoint equations must be solved in serial. One can solve the state and adjoint equa-

tions at different collocation points concurrently. Now, consider the approximation

operator, LQ, with polynomial representation

(LQu)(y) =

Q∑
k=1

Pk(y)uk.

The parallel function evaluation and gradient computation algorithm is listed in Al-

gorithm 6.2.1.

Algorithm 6.2.1 - Parallel Function Evaluation and Gradient Compu-

tation:

Given z ∈ Z and {yk}Qk=1 ⊂ Γ;

for k = 1, . . . , Q do
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Compute uk which solves ẽ(uk, z; yk) = 0;

Compute jk = j(uk, z);

Compute λk which solves ẽu(uk, z; yk)
∗λk + ju(uk, z) = 0.

end for

Compute ĴQ(z) = σ
(∑Q

k=1 Pk(y)jk

)
;

Compute the derivative of ĴQ(z) as

Ĵ ′Q(z) =

Q∑
k=1

ϑk

{
ez(uk(z), z; yk)

∗λk + jz(uk(z), z)
}

where ϑk = E
[
σ′
(∑Q

`=1 P`(y)j(u`(z), z)
)
Pk(y)

]
.

Algorithm 6.2.1 demonstrates that the state and adjoint computations can all be

performed in parallel on multiple processors, but each process must communicate to

compute objective functions and gradients. The application of the Hessian of ĴQ(z)

to a vector, v ∈ Z, exhibits the same structure and parallelism as Algorithm 6.2.1.

For more information on the computation of second order information see [67].

The parallelism of the stochastic collocation discretization is essential for high

dimensional stochastic spaces, Γ. In general, the total number of collocation points,

Q, is extremely large and the only feasible approach to solving these state and ad-

joint equations is to exploit this parallelism. Aside from the immense dimension of

the collocation space, it is often the case that the solution to the state and adjoint

equations at each collocation point is also computationally intense. This is the case

when e(u, z; y) denotes a partial differential equation. Common PDE discretization

techniques often yield extremely high dimensional nonlinear and linear systems to be

solved for the state and adjoint equations, respectively. With the existence of many

parallel and distributed linear algebra tools, it is common practice to solve the state

and adjoint equations using distributed Krylov subspace methods. Furthermore, in
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the case of PDE constraints, much work has gone into developing parallel precondi-

tioners for solving the linearized state equation and the adjoint equation. Many such

preconditioners exist, such as domain decomposition and multi-level preconditioners.

Including distributed linear algebra to Algorithm 6.2.1 gives an efficient, fully par-

allel approach to computing derivatives. The use of linear algebra and collocation

parallelism is not completely straightforward though. Suppose I have a total of nproc

processes available for computation and suppose I wish to dedicate nLA processes to

linear algebra. Here, I assume nLA divides nproc. I can then split the nproc pro-

cesses into nSC = nproc
nLA

groups of nLA processes. Each of these nSC groups is given

a subset of the collocation points and nLA processes to perform distributed linear

algebra computations. This scheme is depicted in Figure 6.1.
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Figure 6.1: Depiction of the communication pattern used to incorporate distributed

linear algebra and parallel stochastic collocation computations.

6.3 Nonlinear Programming Considerations

Although, function evaluations and derivative computations can be performed exploit-

ing parallelism in the linear algebra and the stochastic collocation, these computations

are still extremely expensive. For this reason, it is crucial to use efficient nonlinear

programming techniques in the implementation of Algorithms 5.1.1 and 5.2.1. In the

case that ĴQ(z) is quadratic (or if mk(s) are chosen to be quadratic approximations
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to ĴQ(z)), the trust region subproblem (5.1.1) can be solved using the truncated con-

jugate gradient (CG) method [41]. Truncated CG is a generalization to the standard

CG algorithm which exits if the current CG solution is outside the trust region or

if the algorithm finds a direction of negative curvature. Truncated CG requires a

function that applies the Hessian of mk to a vector. As mentioned above, Hessian

times a vector computations are similar to Algorithm 6.2.1 and require 2Q linear PDE

solves. Although this can be performed using the parallelism described above, if CG

requires many iterations, the trust region approach quickly becomes computationally

infeasible. Adaptivity helps in this aspect because for early trust region iterations,

the number of collocation points is small and thus, only a few linear PDEs must be

solved at each CG iteration.

Another method of reducing the number of CG iterations is to use preconditioning.

In [67], the author explores using low order sparse grid approximations to precondition

the Hessian. This method works well for small problems, but when the stochastic

dimension is large, even low order sparse grids have many collocation points. In

this work, I use limited memory quasi-Newton approximations to the inverse of the

Hessian to automatically precondition the CG iterations. The use of quasi-Newton

preconditioners was presented in [80] in the general context of nonlinear programming

and in [23] in the context of flow control. The results presented in [80] and [23] appear

to be inconclusive on whether or not quasi-Newton preconditioning is advantageous.

For the problems of interest to this thesis, quasi-Newton preconditioning is almost

essential for solving large problems.

In the case that Hessian information is unavailable, quasi-Newton approximations

can be used to generate quadratic approximations of ĴQ(z). In this case, one can use

the quasi-Newton approximation of the Hessian and the inverse Hessian to construct

a double dog leg approach for the solution of (5.1.1) [66]. This approach approximates

the step by constructing a piecewise linear path between the Cauchy point and the

quasi-Newton point (double dog leg curve). If the quasi-Newton point is within the
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trust region, then the algorithm chooses this as the new step. If the quasi-Newton

point is outside of the trust region, then the step is chosen as the point for which

the double dogleg curve intersects the trust region. On the other hand, one can

also use the quasi-Newton approximation of the Hessian with truncated CG to solve

the subproblem (5.1.1). The CG iterations in this approach are inexpensive and the

CG algorithm gives better steps when the quasi-Newton point is outside of the trust

region.



Chapter 7

Numerical Examples

In this chapter, I will present a variety of numerical examples demonstrating the

power and necessity of adaptivity in solving optimization problems governed by PDEs

with uncertain coefficients. Throughout this section, I will refer to ten separate op-

timization algorithms. These algorithms are denoted: NEWTONCG, NEWTONCG

+ BFGS, TRCG HESS, TRCG HESS + BFGS, TRCG BFGS, TRDOGLEG BFGS,

RTRCG HESS, RTRCG HESS + BFGS, RTRCG BFGS, and RTRDOGLEG BFGS.

NEWTONCG denotes Newton-CG using a high fidelity stochastic collocation dis-

cretization of the optimization problem. NEWTONCG + BFGS is Newton-CG using

limited memory BFGS preconditioning. TRCG stands for trust region and RTRCG

stands for retrospective trust region where the trust region subproblems are solved

using truncated CG. The suffix “HESS” refers to using Hessian information and the

addition of “+ BFGS” denotes the use of limited memory BFGS preconditioning. The

suffix “BFGS” denotes the use of limited memory BFGS to approximate the Hessian.

Finally, TRDOGLEG BFGS and RTRDOGLEG BFGS refer to the use of the double

dogleg approach combined with limited memory BFGS Hessian approximations to

approximately solve the trust region subproblem.

111



112

7.1 One Dimensional Optimal Control

The one dimensional examples in this section all correspond to the distributed control

of the steady heat equation. In this section, I will present three examples each demon-

strating different forms of randomness. One particularly nice feature of my adaptive

approach is that Algorithm 5.3.1 exploits anisotropy in the stochastic dependence

of the state and adjoint equations (i.e. dependence on the different directions Γk).

This anisotropy ultimately can reduce the number of PDE solves required for the

computation of derivative information.

Let the physical domain be the bounded interval, D ⊂ R, and let Γ ⊂ RM denote

the stochastic image space. Γ is endowed with the uniform probability density ρ(y).

Throughout this section, I will consider the quadratic control problem

min
z∈Z

Ĵ(z) :=
1

2
E
[
‖u(z)− v̄‖2L2(D)

]
+
α

2
‖z‖2L2(D)

where u(y) = u(y; z) ∈ H1
0 (D) for all y ∈ Γ solves the state equation

−ε(y)d
2u

dx2
(y, x) = f(y, x) + z(x), (y, x) ∈ Γ×D (7.1.1)

u(y, x) = 0, (y, x) ∈ Γ× ∂D

To relate this to the test problem in Section 2.1, Z = L2(D), V = H1
0 (D), W =

H−1(D), H = L2(D), and Q is defined by

〈Qu, v〉H−1(D),H1
0 (D) =

∫
D

u(x)v(x)dx.

The first two examples will use truncated KL expansion diffusivity coefficients.

The isotropic nature of the solution u(y) = u(y, z) of (7.1.1) is characterized by the

decay of the eigenvalues of the covariance function [106]. This decay is not sufficient

to characterize the dependence of the optimization problem on the directions Γk. For

simplicity, I will consider the state operator, Â(y) ∈ L(V ,W) for y ∈ Γ, given as a

truncated KL expansion, i.e.

Â(y) = A0 +
M∑

k=1

√
λkAkyk
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and the operator form of the state equation (7.1.1)

Â(y)u(y) + B̂z = 0.

Define the deterministic reduced cost functional

ĵ(z; y) := j(u(y; z), z) =
1

2
‖u(y; z)− v̄‖2L2(D) +

α

2
‖z‖2L2(D)

where u(y) = u(y; z) solves the state equation (7.1.1). Fix z ∈ Z and define the

function f(y) := j(z; y). One can write the second order Taylor approximation of

f(y) centered around ȳ = E[y] as

f(y) = f(ȳ) +∇f(ȳ)>(y − ȳ) +
1

2
(y − ȳ)>∇2f(y + t(ȳ − y))(y − ȳ) for t ∈ (0, 1).

Note that since ∇f(ȳ) is independent of y ∈ Γ, E[∇f(ȳ)>(y− ȳ)] = 0. Now, one can

explicitly write down the Hessian ∇2f(ζ) as

∇2f(ζ) = (∂2
uuj(u(ζ; z), z)∂yu(ζ, z)) + ∂uj(u(ζ, z), z)(∂

2
yyu(ζ, z)).

The derivatives, ∂yu(ζ, z) and ∂2
yyu(ζ, z), can be computed via implicitly differentiat-

ing (7.1.1). The first partial derivative of u with respect to yk solves

Â(ζ)∂yk
u(ζ, z) +

√
λkAku(ζ, z) = 0

and the second partial derivative solves

Â(ζ)∂2
ykyj

u(ζ, z) +
√
λjAj∂yk

u(ζ, z) +
√
λkAk∂yj

u(ζ, z) = 0.

From these derivatives, it is clear to see that the elements of the Hessian matrix,

∇2f(ζ) satisfy the upper bound

|Ĵ(z)− j(u(ȳ; z), z)| = |E[f(y)]− f(ȳ)| ≤ C

M∑
j=1

M∑
k=1

√
λjλk.

This simple analysis demonstrates the fact that even if the operator A(y) is anisotropic

with respect to the dimensions Γk for k = 1, . . . ,M , the objective function may de-

pend isotropically on the parameters y ∈ Γ.
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Remark 7.1.1 When considering the state equation

Âu(y) + B̂z = b(y),

where Â is deterministic and b(y) is given as a truncated KL expansion, a similar

analysis can be performed. In this case, the solution u(y) = u(y, z) ∈ V for all y ∈ Γ

depends linearly on y ∈ Γ. Thus, plugging u(y) into the quadratic objective function,

j(u(y, z), z), gives a quadratic dependence of f(y) = ĵ(z; y) on the stochastic variables

y ∈ Γ. Since this dependence is quadratic, f(y) is exactly equal to its second order

Taylor polynomial and the Hessian is constant with respect to y ∈ Γ. This gives the

upper bound

|Ĵ(z)− j(u(ȳ; z), z)| = |E[f(y)− f(ȳ)| ≤ C
M∑

k=1

λk.

Hence, the decay in the eigenvalues, λk, completely controls the anisotropic depen-

dence of the objective function on y ∈ Γ.

7.1.1 An Isotropic Example

This example is presented in [28] and serves as an example that does not result in

an anisotropic sparse grid. The physical domain is D = (−1, 1) and the diffusivity

coefficients are defined as the truncated KL expansion

ε(y, x) = ε0(x) +
M∑

k=1

1

4
εk(x)yk

where ε0(x) ≡ 2 and εk(x) are the L2 normalized Lagrange polynomials built Gauss-

Legendre interpolation knots. The random variables, yk, are assumed to be uniformly

distributed on Γ = [−1, 1]M . The regularization parameter is α = 10−6 and the target

profile is

v̄(x) = 2 + sign(cos(πx)).

For the numerical examples, I fix M = 4 terms in the KL expansion. I have

discretized this optimal control problem in space using continuous piecewise linear
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FEM on a uniform mesh of 128 intervals. Figure 7.1 depicts the stochastic collocation

error in the optimal. For the “true” solution, I solve the optimal control problem using

a level eleven isotropic Smolyak sparse grid (Q = 271617). Here, the red line has

slope ν = 1.7. This slope was computed using least squares. The table in Figure 7.1

contains the L2(D) error associated with different levels of isotropic Smolyak sparse

grids (`) and the corresponding number of sparse grid cubature knots (Q). In this

table, “rate” refers to the slope between two consecutive points.
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` Q Error Rate

0 1 6.48111191e+00

1 9 2.93765793e-01 1.408

2 41 6.53655636e-01 0.991

3 137 1.43160490e-03 3.167

4 401 2.55996314e-04 1.603

5 1105 7.80872629e-06 3.443

6 2925 5.13762335e-06 0.430

7 7537 1.10353993e-05 -0.808

8 18945 9.86769644e-07 2.619

Figure 7.1: (Left) Collocation error in the optimal controls. The red line denotes

the least squares fit for the collocation. The estimated convergence rate is ν = 1.7.

(Right) L2 error and associated rate of decrease for the optimal controls.

To use the adaptive collocation and trust region framework described in this thesis,

I employ level five isotropic Smolyak sparse grids built on one dimensional Clenshaw-

Curtis interpolation knots (Q = 1105) for the high fidelity approximation of the

objective function. In Figure 7.2, I have plotted the optimal control on the left and

the expected value of the solution to the state equation computed using the optimal

control. In addition, I have added one and two standard deviation intervals around

the expected value of the state. Furthermore, in Table 7.1, I compare ten different

algorithms described above.
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Figure 7.2: (Left) Computed optimal control. (Right) Expected value of optimal

state (blue solid line) plus one (red dashed line) and two (black dashed line) standard

deviations.
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TR Adaptive PDE CP Reduction

NEWTONCG 7 0 224,315 1,105

NEWTONCG + BFGS 6 0 114,920 1,105 1.95

TRCG HESS 6 88 110,367 769 2.03

TRCG HESS + BFGS 5 89 46,934 809 4.78

TRCG BFGS 60 71 196,671 721 1.14

TRDOGLEG BFGS 61 71 202,825 721 1.11

RTRCG HESS 6 88 113,561 769 1.98

RTRCG HESS + BFGS 5 89 48,630 809 4.61

RTRCG BFGS 57 88 240,162 769 0.93

RTRDOGLEG BFGS 59 71 234,543 721 0.96

Table 7.1: This table contains the total number of outer iterations (TR), the total

number of adaptive steps (Adaptive), the total number of PDE solves (PDE), the

total number of collocation points in the final sparse grid (CP), and the reduction

factor of total PDE solves required by the specified algorithm versus Newton-CG

(Reduction).



118

7.1.2 A Mildly Anisotropic Example

In this example, the physical domain is D = (0, 1). To construct the diffusivity

coefficients, define the sets Sk := (k−1
M
, k

M
] for k = 1, . . . ,M . The diffusivity parameter

is defined as

ε(y, x) =
M∑

k=1

{
(M − k + 0.01) +

M − k
k3

yk

}
χSk

(x).

This type of diffusion parameters is called checkerboard diffusion and is often used

for numerical examples. Each interval in the checkerboard diffusion parameter has

decreasing importance (i.e. the diffusivity on each interval is scaled by M−k
k3 ). This

type of diffusion was studied in [39]. The stochastic image space is Γ := [0, 1]M

endowed with the uniform distribution, ρ(y) ≡ 1. The regularization parameter is set

to α = 10−6 and the desired profile is given by

v̄(x) = 2x+ sin(2πx).

I have discretized this optimal control problem using piecewise linear finite ele-

ments on a uniform mesh of 128 intervals. I choose M = 4 random variables and, for

the high fidelity approximation of the objective function, I use a level five isotropic

Smolyak sparse grid built on one dimensional Clenshaw-Curtis interpolation knots

(Q = 1105). In Table 7.2, I compare the ten different algorithms described above.

This table clearly demonstrates the advantage of using my adaptive approach. With

no preconditioning, the adaptive approach experiences about a seven fold reduction

in the number of PDE solves required to obtain the optimal controls. Adding limited

memory BFGS preconditioning further reduces the number of PDE solves required

and results in a ten fold reduction. Figure 7.3 depicts the computed optimal con-

trol (left) and the expected value of the optimal state (blue solid line) plus one (red

dashed line) and two (black dashed line) standard deviation intervals. Figure 7.3

clearly demonstrates the mild anisotropy associated with this optimization problem.

One will notice that the standard deviation is smaller for x > 0 and decreases as x

tends toward one. Figure 7.4 demonstrates the stochastic collocation discretization
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error. The red line in the left image is a least squares fit to the error curve. The least

squares estimated slope is ν = 3.5. The table on the left contains the L2(D) error

for the different levels of isotropic Smolyak sparse grid and their associated slopes

between two consecutive levels. Finally, Figure 7.5 depicts the optimal controls (left)

corresponding to the deterministic substitute problem where the random variables

y ∈ Γ were replaced with ȳ = E[y]. The right image in Figure 7.5 depicts the ab-

solute error between the controls computed for the deterministic problem and the

controls computed for the stochastic problem.

TR Adaptive PDE CP Reduction

NEWTONCG 6 0 143650 1105

NEWTONCG + BFGS 6 0 90610 1105 1.59

TRCG HESS 6 21 20685 185 6.94

TRCG HESS + BFGS 5 27 14058 261 10.22

TRCG BFGS 41 19 59848 153 2.40

TRDOGLEG BFGS 51 18 75347 141 1.91

RTRCG HESS 6 21 21431 185 6.70

RTRCG HESS + BFGS 5 27 14626 261 9.82

RTRCG BFGS 41 19 64660 153 2.22

RTRDOGLEG BFGS 51 18 81882 141 1.75

Table 7.2: Algorithm comparison for checkerboard diffusivity one dimensional exam-

ple.



120

Optimal Control

−1 −0.5 0 0.5 1
−200

0

200

400

600

800

x

z(
x)

Optimal State

−1 −0.5 0 0.5 1
0

0.5

1

1.5

2

x

u(
x)

Figure 7.3: (Left) Computed optimal control. (Right) Expected value of optimal

state (blue solid line) plus one (red dashed line) and two (black dashed line) standard

deviations.
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Figure 7.4: (Left) Collocation error in the optimal controls. The least squares fit

red line has slope ν = 3.5. (Right) L2 error and associated rate of decrease for the

optimal controls.
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Figure 7.5: (Left) The optimal controls for the deterministic problem with y ∈ Γ

replaced by ȳ = E[y] (solid black line). The red dashed line is the control computed

via the stochastic problem. (Right) Errors between the optimal controls for the

stochastic problem and the optimal controls for the mean value problem.
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7.1.3 An Anisotropic Example

This example is motivated by subsurface flow control through fractured media. In

particular, I am interested in the situation where the location of the fractures is un-

certain. Furthermore, this example investigates the effects of discontinuous diffusion

parameters on the convergence of the stochastic collocation method. The diffusivity

parameters in the example are not given as a truncated KL expansion. Further-

more, this example incorporates a stochastic right hand side. The physical domain is

D = (−1, 1) and the stochastic image space is Γ = [−0.1, 0.1] × [−0.5, 0.5] endowed

with the uniform probability density. The diffusion parameter is defined as

ε(y, x) = ε1χ(−1,y1)(x) + ε2χ(y1,1)(x)

with ε1 = 0.1, ε2 = 10 and the forcing term is defined as

f(y, x) = e−(x−y2)2 .

The regularization parameter is set to α = 10−4 and target profile is v̄ ≡ 1.

I discretized the state equation in space using continuous piecewise linear finite

elements on a uniform mesh of N = 128 intervals. In order to obtain accurate results,

the discontinuity in ε should be aligned with mesh vertices. To do this, each sample

point, y1 ∈ [−0.1, 0.1], can be added as a vertex to the mesh. The collocation space

is built on one dimensional Gauss-Patterson interpolation knots. The high fidelity

collocation discretization is performed using a level seven isotropic Smolyak sparse

grid (Q = 1793). The optimization results are depicted in Figure 7.6 and Figure 7.7.

Figure 7.6 illustrates the adaptive sparse grid at the final step of optimization. The

right image contains the active (red) and old (blue) index sets. The union of these

two sets gives the generalized sparse grid index set, I. The left figure depicts the

resulting sparse grid of collocation points corresponding to I. From this index set,

the anisotropy associated with this optimization problem is clear; that is, much more

refinement is necessary in the y1 direction as opposed to the y2 direction. Figure 7.7
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displays both the optimal controls and the expected value of the state plus one and

two standard deviation intervals. The iteration history for the trust region framework

is displayed in Table 7.3.

Index Set, I
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Figure 7.6: (Left) Generalized sparse grid index set. The red blocks denote “active”

indices and the blue blocks denote “old” indices. The gray blocks denote the in-

dices in the isotropic Smolyak index set of level eight. (Right) Collocation points

corresponding to the index set I = A ∪O.

Figure 7.8 depicts the optimal controls (left) corresponding to the deterministic

substitute problem where the random variables y ∈ Γ were replaced with ȳ = E[y].

The right image in Figure 7.8 depicts the absolute error between the controls com-

puted for the deterministic problem and the controls computed for the stochastic

problem. Figure 7.9 depicts the stochastic collocation error associated with different

levels of the isotropic Smolyak sparse grid. The least squares estimated convergence

rate (red line) is ν = 0.7. The convergence rate is severely diminished from the pre-

vious one dimensional example. This convergence rate is expected due to the lack

of smoothness in the state and adjoint equations with respect to y1. In fact, this

convergence rate is roughly the same as Monte Carlo (i.e. ν = 0.5).
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Figure 7.7: (Left) Computed optimal control. (Right) Expected value of computed

optimal state with one and two standard deviation intervals added.

k Ĵ(zk) ‖∇ĴI(zk)‖Z ‖sk‖Z ∆k CG Adaptive CP

1 2.264427e-01 1.855366e-02 1.528843e+02 1000 5 6 1

2 1.509245e-01 8.555873e-04 4.918603e+01 2500 5 7 49

3 1.349774e-01 6.153557e-05 8.451017e+01 5000 10 2 385

4 1.346243e-01 3.457096e-06 1.502707e+01 5000 12 2 513

5 1.346233e-01 2.368099e-07 2.097707e+00 5000 12 2 545

6 1.346233e-01 1.022377e-08 1.196515e-01 5000 11 2 641

7 1.346233e-01 5.780752e-10 8.693302e-03 5000 13 0 769

Table 7.3: (Iteration History) k is the number of trust region iteration, Ĵ(zk) is

the objective function value, ‖∇ĴI(zk)‖Z is the model gradient norm value, ‖sk‖Z
is the step size, ∆k is the trust region radius, CG is the number of CG iterations,

Adaptive is the number of sparse grid adaptation iterations, and CP is the number

of collocation points.
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Figure 7.8: (Left) The optimal controls for the deterministic problem with y ∈ Γ

replaced by ȳ = E[y] (solid black line). The red dashed line is the control computed

via the stochastic problem. (Right) Errors between the optimal controls for the

stochastic problem and the optimal controls for the mean value problem.
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0 1 2.71021418e+00

1 5 9.39152597e-01 0.659

2 17 4.81411626e-01 0.546

3 49 2.72342525e-01 0.538

4 129 1.16051199e-01 0.881

5 321 4.08098085e-02 1.146

6 769 3.20679403e-02 0.276

7 1793 1.46056223e-02 0.929

Figure 7.9: (Left) Collocation error in the optimal controls. The least squares fitted

convergence rate is ν = 0.7. (Right) L2 error and associated rate of decrease for the

optimal controls.
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7.2 Source Inversion Under Uncertainty

Source inversion problems are of paramount importance to many fields such as the

monitoring of carbon output. In the deterministic setting, the source inversion prob-

lem is to determine the location and magnitude of the sources from observed data.

Typically, these observations are point observations and the physics governing the

system are assumed to be known. I will consider a steady state source inversion prob-

lem where the governing physics are advection-diffusion. Let D = (0, 1)d ⊂ Rd for

d = 2, 3 be the physical domain. The PDE describing the physical system is

−ε∆v + V · ∇v = z in D (7.2.1)

∇v · n = 0 on ∂DN

v = g on ∂DD

where ∂DN denotes the outflow boundary and ∂DD denotes the Dirichlet boundary.

The source inversion problem with Tikhonov regularization can be written as

min
z∈Z

ĵ(z) :=
1

2

O∑
k=1

|v(xk; z)− v̄k|2 +
α

2
‖z‖2Z . (7.2.2)

where v = v(z) solves (7.2.1). This optimization problem is an instance of the test

problem from Section 2.1 with Z = L2(D), V = H`(D), W = V∗, H = RO with the

Euclidean inner product, q̄ = v̄ ∈ RO, and Q ∈ L(H`(D),RN) is defined as the point

evaluation operator

Qv = (v(x1), . . . , v(xO))>.

Note that Q is a continuous linear operator if ` > 0 and −` < −d + d
2
. Q is

also continuous if V = H1(D) ∩ C0(D). I will pose the optimization problem in

V = H1(D) and discretize (7.2.1) using continuous finite elements. Therefore, the

discretized solution of (7.2.1) is a member of H1(D) ∩ C0(D) and Q is well defined.

A popular alternative to solving the deterministic problem (7.2.2), is to use

Bayesian inference. In the Bayesian framework, one assumes there is some statistical
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noise associated with the model (7.2.1) and the observations, v̄. Incorporating this

noise and prior knowledge of the sources allows one to write down Bayes’ rule for the

conditional probability. This framework is highly subjective as the optimal solution is

based on prior knowledge. To circumvent this subjectivity, I have formulated (7.2.2)

as a statistical inverse problem by assuming random field advection coefficients, V.

This is a frequentist approach to statistical inverse problems for which I can apply

my adaptive stochastic collocation and trust region framework. Furthermore, I will

focus on the expected value risk measure, σ(Y ) = E[Y ].

I discretize the advection-diffusion equation (7.2.1) using streamline upwind Petrov-

Galerkin (SUPG) stabilized continuous piecewise linear finite elements built on a uni-

form mesh of quadrilaterals. My SUPG implementation is based on [47]. The side

length of the quadrilaterals used will be denoted by h. Let Vh = span{φ1, . . . , φN} ⊂

V denote the FEM basis. The linear operators A(y) and B(y) from Section 2.1 are

A(y) ∈ RN×N and B ∈ RN×N and are defined via the SUPG finite element discretiza-

tion as

Aij(y) =

∫
D

ε∇φi(x) · ∇φj(x) + V(y, x) · ∇φi(x)φj(x)dx

+ τ(h)

∫
D

(V(y) · ∇φi(x))(V(y) · ∇φj(x))dx

Bij(y) =−
∫

D

φi(x)φj(x)dx− τ(h)
∫

D

φi(x)(V(y) · ∇φj(x))dx.

Here, τ = τ(h) denotes the SUPG parameter. Furthermore, the Riesz operator R

corresponding to the inner product on Z is written as R ∈ RN×N such that

Rij =

∫
D

φi(x)φj(x)dx.

The inverse problem (7.2.2) is typically mesh dependent and convergence varies ac-

cording to mesh size. To overcome this mesh dependence, I use the discretized objec-

tive function

ĴQh(z) =
h2

2

O∑
k=1

EQ[|uh(xk; z)− v̄k|2] +
α

2
‖z‖2Z
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where EQ denotes the quadrature approximation to the expected value, z =
∑N

n=1 znφn

for ~z = (z1, . . . , zN)> ∈ RN , and uh(y) = uh(y; z) =
∑N

n=1 unφn and ~uh = (u1, . . . , uN)> ∈

RN solves

A(y)~uh(y) + B(y)~z = 0.

The scaling h2 to the mismatch term in the objective function gives a scale indepen-

dent regularization term.

I have implemented this problem using the Euclidean inner product and the L2(D)

inner product defined on the discretized control space. The L2(D) inner product on

the discretized control space corresponds to the inner product

〈z, s〉Z = ~z>R~s

where z =
∑N

n=1 znφn and s =
∑N

n=1 snφn for ~z = (z1, . . . , zN)> and ~s = (s1, . . . , sN)> ∈

RN . In the L2(D) inner product the gradient is

∇ĴQh(z) = α~z + R−1EQ[B∗~ph],

while in the Euclidean inner product the gradient is

∇ĴQh(z) = αR~z + EQ[B∗~ph].

In both cases, ~ph denotes the vector of coefficients corresponding to the solution to

the finite element approximation to the adjoint equation

A∗(y)~ph + (Q∗Q~uh − v̄) = 0

where Q ∈ RO×N is the observation operator (i.e. part of an identity matrix scaled

by h if the observations {xk}Ok=1 correspond to mesh vertices).

7.2.1 Two Dimensional Source Inversion

In two dimensions (d = 2), the Neumann and Dirichlet boundaries are

∂DN = {1} × [0, 1] and ∂DD = ∂D \ ∂DN .



129

and the inhomogeneous Dirichlet conditions are

g(y, x) = 0 for x ∈ (0, 1)× {0, 1},

and on {x ∈ ∂DD : x ∈ {0} × (0, 1)}

g(y, x) = d1(y1, x2)

where d1 : [−1, 1]× (0, 1)→ [0, 1] is defined as

d1(γ, ζ) =


0 if ζ /∈ (0.25, 0.75),

sin(2π(ζ − 0.25)) if ζ ∈ (0.25, 0.75) and γ = 0,

sin
(
π exp(4γ(ζ−0.25))−1)

exp(2γ)−1

)
if ζ ∈ (0.25, 0.75) and γ 6= 0.

(7.2.3)

The diffusivity parameter is deterministic and set to ε ≡ 10−2 and the two dimensional

random advection field is

V(y, x) =
(
e
− (x2−x̄)2

γ2
1 +

M∑
k=3

γ0yk

k
e
− (x2−x̄)2

γ2
k

)cos(θy2)

sin(θy2)


where γ0 = 0.05, γ1 = 0.0833, γk = γ1

(k−1)2
for k = 3, . . . ,M , x̄ = 0.5, and θ = π

32
.

Furthermore, the random vector, y ∈ Γ := [−1, 1]M , is uniformly distributed with

joint density, ρ(y) ≡ 1
2M .

The true sources and observed data are depicted in Figure 7.10. For this ex-

ample, there are fifteen true sources that are randomly distributed throughout the

subdomain [0.3, 1] × [0, 1] with random magnitudes and widths. The observed state

is computed by solving the state equation with the random variable y ∈ Γ replaced

with y = E[y] = 0. Point observations of the observed state are taken at each mesh

vertex. The computational mesh used is a uniform 64 by 64 mesh of quadrilaterals.

The observed state and stochastic state are solved on this mesh using continuous

piecewise linear finite elements. For the numerical results presented here, M = 5 and

the collocation points are taken to be level four isotropic Smolyak sparse grid knots

built on one dimensional Clenshaw-Curtis interpolation knots. Figure 7.11 depicts the
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computed sources and the resulting expected value of the state. Both Figure 7.10 and

Figure 7.11 only display the sources in the subdomain [0.3, 1]× [0, 1]. The computed

sources in the full domain are depicted in Figure 7.12. Notice that there are oscilla-

tions near the Dirichlet boundary x1 = 0. This phenomenon is due the discrepancy

between the inhomogeneous Dirichlet conditions E[g(y, x)] and g(0, x) (i.e. the dis-

crepancy between the stochastic state equation and the deterministic observed state

equation). The difference in the Dirichlet boundary conditions can be seen in the top

right image in Figure 7.12. One will also notice in the bottom image of Figure 7.12

that the uncertain Dirichlet conditions are a main source of variability in the state

equation. The adapted sparse grid index set for this 2D source inversion problem is

displayed in Figure 7.13. Figure 7.13 characterizes the anisotropy associated with the

random variables in this problem. The top left image shows isotropy and a strong

dependence on the first two directions y1 and y2. Directions y1 and y2 obtain the

maximum level for the sparse grid (i.e. ` = 5). These directions correspond to the

Dirichlet condition and the angle of advection. The subsequent images demonstrate

the decreasing importance of the random variables y3, y4, and y5, which all correspond

to the advection amplitude.
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True Sources Observed State

Figure 7.10: (Left) True sources. (Right) Observed state computed by solving the

state equation with y = 0.

Computed Sources Expected Value of State

Figure 7.11: (Left) Computed sources. (Right) Expected value of optimal state.
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Figure 7.12: (Left) Computed sources. (Right) The expected value of the inhomo-

geneous Dirichlet condition (black) and the Dirichlet condition evaluated at y = 0.

This difference accounts for the hot spot near the boundary x1 = 0 in the left im-

age. (Bottom) Standard deviation of the state. Notice that most variation is due to

Dirichlet conditions.
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Directions i1, i2, i3 Directions i2, i3, i4

Directions i3, i4, i5

Figure 7.13: The final adapted sparse grid index set for 2D source inversion.
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7.2.2 Three Dimensional Source Inversion

In three dimensions (d = 3), the Neumann and Dirichlet boundaries are

∂DN = {1} × [0, 1]× [0, 1] and ∂DD = ∂D \ ∂DN .

and the inhomogeneous Dirichlet conditions are

g(y, x) = 0 for x ∈ (0, 1)× (0, 1)× {0, 1} ∪ (0, 1)× {0, 1} × (0, 1),

and on {x ∈ ∂DD : x ∈ {0} × (0, 1)× (0, 1)}

g(y, x) = d1(y1, x2)d1(y2, x3)

where d1(γ, ζ) is defined in (7.2.3). The diffusivity parameter is deterministic and set

to ε ≡ 10−2 and the two dimensional random advection field is

V(y, x) =
(
e
− (x2−x̄)2

γ2
1 +

M∑
k=4

γ0yk

k
e
− (x2−x̄)2

γ2
k

)
cos(θy3)

sin(θy3)

0


where γ0 = 0.05, γ1 = 0.0833, γk = γ1

(k−2)2
for k = 4, . . . ,M , x̄ = 0.5, and θ = π

32
.

Furthermore, the random vector, y ∈ Γ := [−1, 1]M , is uniformly distributed with

joint density, ρ(y) ≡ 1
2M .

The true sources and observed data are depicted in Figure 7.14. As in the 2D

source inversion example, there are fifteen true sources that are randomly distributed

throughout the subdomain [0.3, 1]×[0, 1]×[0, 1] with random magnitudes and widths.

The observed state is computed by solving the state equation with the random variable

y ∈ Γ replaced with y = E[y] = 0. Point observations of the observed state are taken

at each mesh vertex. The computational mesh used is a uniform 32 by 32 by 32 mesh

of hexahedron. The observed state and stochastic state are solved on this mesh using

continuous piecewise linear finite elements. For the numerical results presented here,

M = 6 and the collocation points are taken to be level two isotropic Smolyak sparse

grid knots built on one dimensional Clenshaw-Curtis interpolation knots. Figure 7.15
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depicts the computed sources in the upper right image, contour lines of the expected

value of the state, and contour lines of the standard deviation of the state. Notice

that there are oscillations near the Dirichlet boundary x1 = 0 as was the case in

the 2D source inversion example. This phenomenon is due the discrepancy between

the inhomogeneous Dirichlet conditions E[g(y, x)] and g(0, x) (i.e. the discrepancy

between the stochastic state equation and the deterministic observed state equation).

True Sources Observed State

Figure 7.14: (Left) True sources. These sources are plotted using an isosurface of

z = 0.2. (Right) Observed state computed by solving the state equation with y = 0.
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Computed Sources Expected Value of State

Standard Deviation of State

Figure 7.15: Isosurface of z = 0.2 for the computed sources (left), contours of the

expected value of the optimal state (right), and contours of the standard deviation of

the optimal state (bottom). Notice the phenomenon near the inhomogeneous Dirichlet

boundary in the upper left figure. This “fake source” is due to the difference between

E[g(y, x)] and g(0, x) as in the 2D source inversion example.



Chapter 8

Conclusions and Future Work

I have presented in the thesis a general problem formulation for equality constrained

optimization problems where the equality constraint depends on random inputs. This

general formulation includes many interesting optimization problems such as the risk-

averse optimal control and design of PDEs with uncertain coefficients. The main

contributions of my work are the analysis and algorithms developed for the risk-

averse optimization of PDEs with uncertain coefficients. I have developed a sparse

grid stochastic collocation discretization scheme for these optimization problems and

extended error bounds from the theory of stochastic collocation for PDEs with uncer-

tain coefficients to the case of optimization. Furthermore, I have employed general-

ized sparse grids to obtain efficient discretizations of these optimization problems and

have proven certain interpolation and approximation properties for these generalized

sparse grids operators. I have developed an adaptive stochastic collocation framework

for the efficient solution of optimization problems governed by PDEs with uncertain

coefficients. This adaptive framework utilizes adaptive sparse grids to generate inex-

pensive approximate models and guides adaptivity using the trust region algorithm.

I have applied this framework using both the basic trust region algorithm and the

retrospective trust region algorithm. For the retrospective trust region algorithm, I

have proven global first order convergence under a weakened condition on gradient

137
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exactness. Finally, I have implemented this trust region framework employing trun-

cated conjugate gradients (CG) to solve the trust region subproblem. To increase the

efficiency of CG and further reduce the number of PDE solves required at every trust

region iteration, I employ automatic preconditioning using limited memory BFGS

inverse Hessian approximations.

This thesis is focused on the efficient solution of the reduced space problem (2.2.1)

using adaptive sparse grid collocation. The trust region algorithm that I have devel-

oped here is not limited to adaptivity in the stochastic dimension, but can also be

extended to spatial adaptivity via finite elements and even model order reduction

adaptivity for time dependent problems via adaptive snapshot selection for projec-

tion based reduced order modeling. Although the method I have developed is tied

to non-intrusive methods, one may be able to extend adaptive polynomial chaos and

Taylor series approximation methods to the optimization context using this trust re-

gion framework. These additional outlets for adaptivity are yet to be studied and are

natural extensions of my doctoral work.

The incorporation of risk measures brings about many issues for analysis, com-

putation, and algorithms, but allows for explicit handling of the risk or variation

associated with each design or control. Risk measures are a natural means of quan-

tifying tail value risk in engineering design and safety analysis where the goal is to

determine a design that will withstand extreme and rare events. Convergence analysis

is a first step to incorporating risk measures in an optimization scheme. It is essential

to know that the controls computed via a discretization of (2.2.1) do converge to the

true controls as the discretizations are refined. This is a challenging task as most

risk measures are not Fréchet differentiable. This convergence analysis can be per-

formed by substituting a smooth approximation of the risk measure. Tracking these

discretization and approximation errors through to the optimal controls is essential

for accurate quantification of risk and uncertainty.

In addition to risk measures, I would like to incorporate general constraints into
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my optimization formulation. In particular, I would like to tackle chance constraints.

Chance constraints offer a natural means of accurately estimating operating ranges

and fault tolerances for certifying engineering components in control and design prob-

lems. As mentioned earlier, chance constraints may cause issues for gradient based

algorithms since they are not necessarily Fréchet differentiable. These constraints can

be handled in a similar way to risk measure via smooth approximation. Again, these

approximation errors must be tracked through to the optimal control values. The ad-

dition of general constraints is beyond the scope of my trust region framework. The

algorithm I have proposed works for unconstrained reduced space problems, (2.2.1).

In the presence of state and control constraints, my trust region algorithm must be

extended. I plan to extend my algorithmic capabilities to the full space and deter-

mine an appropriate manner of incorporating adaptivity. Such adaptive full space

algorithms have been considered in the case of finite element adaptivity in [127].

Risk measures and chance constraints are problem formulation issues and are

dictated by the desired application. A main concern of these optimization problems

is algorithmic efficiency. In the case of time dependent problems, some form of model

order reduction is critical in making the numerical solution of such problems feasible.

I am interested in coupling projection based model order reduction techniques with

my stochastic collocation framework. In this case, a fixed projection basis (i.e. fixed

snapshots) may not be necessary. In fact, the basis can be built adaptively in the

same manner as the sparse grid using the inexact gradient condition, (5.1.3). Another

approach to incorporating model order reduction is to fix the projection basis by a

greedy sampling of the parameter space to choose “optimal” snapshots [31].
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